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Abstract ---------------   
 

The ACER is an analytic framework designed to investigate/analyze student reasoning 
compared to professional reasoning when mapping mathematical tools to physical 
models.  The ACER framework developed at the University of Colorado, Boulder, has 
been designed to be implemented by non-PER (physics education researchers) while still 
leveraging concepts in PER to assist in analytics. This paper describes the 
implementation of the ACER framework at Oregon State University for a canonical 
junior level Coulomb’s Law problem.  This paper describes the process, difficulties, and 
benefits of implementation of the ACER framework as carried out by undergraduate 
physics major at Oregon State University.  The ACER framework gave a non-PER 
physics undergraduate a richer understanding of student work.  This richer 
understanding allowed the undergraduate researcher to get a better understanding of 
possible student thinking which enabled them a wider perspective when assisting students 
in future encounters. 

 
Chapter 1 - Introduction 
 
1.1 Motivation and Objective 
 
One of the goals for all instructors is to assist student understanding.  If an instructor can identify 
student difficulties, then the instructor can help the student overcome these difficulties.  While 
this is trivial to state, understanding clearly what goes on in a student’s mind is a daunting task.  
Most of an instructor’s insight into student reasoning comes in the form of written work.  The 
interpretation of this work allows a glimpse into student reasoning and possibly their difficulties.    
 
Instructors typically use some form of rubric to assess student’s written work.  Rubrics done well 
can highlight student difficulties and clearly signal these difficulties to an instructor.  
Unfortunately, even an excellent rubric only gives a sense of general student difficulties.   
 
One of the first investigative steps in assessing student specific difficulties is posing a question to 
students that may highlight a specific difficulty.  As an instructor designs their question, they are 
also thinking about or even designing the rubric in parallel.  Depending on the type of student 
difficulty the instructor is investigating, this design framework for the investigation can span the 
spectrum from very simple to quite complex. 
 
In the realm of physics, one typical student difficulty is taking the mathematical language (i.e. 
Coulomb's Law) and correctly applying it to a given physical situation (i.e. potential due to a 
ring of charge).  Students understanding of how the mathematical language is translated to a 
physical situation is one of the keys to their success.  As a student goes higher in their 
undergraduate physics education, this mathematical language becomes more and more replaced 
with the mathematical tools (i.e. finding the curl of an electrostatic field is zero) behind the 
mathematical language.  This is taking the mathematical language and putting it into a physics 
context.   
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In the upper division of college physics, a common student difficulty is not being able to 
correctly map mathematical tools onto a corresponding physical model.  This type of student 
difficulty is not only common in physics, but in chemistry, biology, and engineering.  Most 
college instructors are not formally trained in strategies that would allow them to easily build 
such a rubric that would help instructors investigate this difficulty.  The physics education 
research (PER) faculty University of Colorado Boulder saw a need for a framework that would 
allow instructors to produce rubrics that would highlight student difficulties in mapping 
mathematical tools to physical models.  With that in mind, they produced the Activation 
Construction Execution Reflection (ACER) framework[1].  The goal of the ACER framework is 
to assist non-PER trained instructors in building rubrics that highlight student difficulties in 
mapping mathematical tools to physical models. 
 
This paper will use the ACER to qualitatively assess upper-division physics student’s ability to 
select, map, and use appropriate mathematical tools for a problem for a junior level 
electromagnetism course.  This paper will also examine the strengths and shortcomings of the 
ACER framework.   
 
1.2 The ACER  
 
 1.2.1 - What is the ACER Framework? 
 
The primary goal of the ACER is to highlight student difficulties in mapping mathematical tools 
to physical models[1].  This is done by giving instructors a framework to build an ACER rubric.  
The ACER rubric is broken down into four parts: 
 

A. Activation of mathematical tools 
C. Construction of mathematical models 
E. Execution of the mathematics 
R. Reflection on the result 

 
These categories represent a generalized structure for solving upper-division physics problems. 
While these categories are not an attempt to approximate students’ solutions, they do help setup 
the analysis of student work[1].  Ideally problem solving starts with activation of a mathematical 
tool, then construction of a model that is based on the activated tool and the parameters of the 
problem, then the execution of the mathematics of the constructed model, and finally reflection 
on the result to see if the outcome of the execution passes any checks that seem relevant to 
explore.  It should be stressed it is not necessary for these steps to happen in this specific order.  
It is just as likely after construction of the model that one can reflect on the resulting model and 
then activate a new resource that leads to an updated model.  These categories are meant to help 
isolate the different steps of the problem solving process.  
 
Activation of the tool generally relies on the problem statement.  The problem statement can cue 
the activation of resources for specific tools (e.g. find the electric field due to a point charge).  
Unfortunately, the resources that students activate are not necessarily the resources that are 
intended.  The resources that an individual leverages is dependent on that individual and their 
mindset during the task.[1]   
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Construction of the model takes what has been activated and starts putting it together.  Models 
can range from canonical equations (e.g. V = kq/r) to drawing diagrams.  Then these constructed 
models have the physical quantities of the situation mapped onto them (e.g. point charge ‘Q’, 
find V at ‘D’ meters away; V= kQ/D).  This category gets at how the individual is applying the 
activated tool to the physical situation. 
 
Execution of the mathematics takes the constructed model (e.g. unevaluated integrals) and takes 
the model and turns it into simplified mathematical expressions (e.g. evaluated integrals)[1].  
This category covers how the mathematical tool is understood on a mathematical level.  
 
Reflection on the result takes what has been executed and attempts to test the result.  These tests 
can be as simple as doing unit analysis on a final expression.  This is the step that professionals 
generally do without prompting.  Hopefully, this professional habit starts building during the 
sophomore and junior years for most physics students.  
 
While these categories for the ACER provide a generalized framework, the steps inside each 
category need to be operationalized in order to give a rubric specific to a given problem.  The 
first step in this operationalization requires the instructor to design a question that targets a 
specific mathematical tool.  The example in this paper uses the integral form of Coulomb’s Law 
as the tool to be investigated.  Once the instructor designs the question around the specific 
mathematical tool, the instructor then consults a “content expert”.  A content expert is, well, an 
expert in the content of the question being posed.  The content expert will then solve the question 
completely and in a discussion with the instructor will lay out the important aspects of the 
problem solving process.  Once the important aspects have been agreed upon, these aspects are 
mapped to framework and the ACER rubric is complete. Examples of a completed ACER rubric 
are given in the following section. 
 
This rubric framework allows for a deeper evaluation for student reasoning. The ACER focuses 
on what may cause students to activate use of, for example, Gauss’ Law versus the integral form 
of Coulomb’s Law.  How do students then construct the mathematical model to fit the physical 
situation activated by the question (e.g. Did they choose limits inconsistent with the physical 
model?).  The student’s execution of the mathematics from the constructed model, did they 
correctly integrate? Finally, reflection on the final result, did students check limiting cases or 
units of their final answer?   
 
This detailed rubric allows non-PER instructors to “systematically investigate how students 
integrate mathematics with their conceptual knowledge to solve complex physics problems.” The 
results of this investigation will reveal possible gaps in student understanding. 
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1.3 Research Environment 
 
 1.3.1 The Researcher 
 
Michael Goldtrap is a physics undergraduate at Oregon State University (OSU).  He has 
completed the paradigm in physics sequence at OSU and is currently a senior.  In the past he has 
worked in multiple capacities (camera operator, data entry, etc.) for the Paradigms in Physics 
project.  Michael is currently working under Professor Corinne Manogue.   
  

1.3.2 Paradigms in Physics at Oregon State University 
 

The upper division physics courses at OSU are heavily reformed.  This reform is called the 
Paradigms in Physics. The Paradigms in Physics is a classroom reform primarily focuses on the 
junior year physics courses for physics majors.  During each term, students take 3 unique 
paradigm courses in succession.  Each course is subject specific and lasts three weeks.  Each 
week students have 7 instructor contact hours.  During these contact hours, instructors primarily 
use small group activities, lab, and lecture in varying degrees. The primary goal is to promote 
active student learning/engagement.  At the end of each three week paradigm students are given 
a final exam.   
 
Chapter 2 – Methods 
 
2.1  Building the ACER Rubric 
 
This section will describe the methods used to build an ACER rubric using the ACER framework 
and how the analysis was carried out.   
 

2.1.1 The Mathematical Tool To Investigate 
 

Are students using the integral form Coulomb's Law for charge distributions that do not favor the 
use of Gauss’s Law? 
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2.1.2 Forming the Question 
 

 
figure 2.1 - “An example of the canonical exam problem on 
continuous charge distributions.”[1].  This was the primary 
example question used to help shape/form the question 
given to for OSU physics students. 
 
In their initial ACER paper, Wilcox et al. used, as an explicit example, the electrostatic potential 
above the center of a charged disk, figure 2.1.  The published problem statement asked students 
to “Calculate the electric potential at point P on the z-axis from a disk with a given surface 
charge density of 	ߪሺ߮ሻ”.  Students were also given a diagram of the situation.   
 

4.  Suppose there is a thin disk with a radius R and a surface charge density that 
changes with angle ߪ= ߪሺ߮ሻ. 

(a)  Find the total charge of the disk. 
(b)  Find the electric potential at a distance D above the exact center of the disk. 

figure 2.2 - Problem statement given to OSU students 
 
In this paper, the researcher, in consultation with the PER faculty of OSU modified the 
previously published question.  This modified problem statement can be seen in figure 2.2.  Both 
the Colorado and the OSU problem statements specify a charge density ߪሺ߮ሻ which depends on 
angle but is otherwise unspecified.  The finite size of the disk and the ߮ dependent charge 
density both make the use of Gauss’s law inappropriate.  There were changes in: wordage and 
notation, parts of the question, and the diagram.  The wordage and notation changes were due to 
keeping the question more in line with the class norms.  The breaking down into multiple parts 
allowed isolation of student reasoning when building ݀ܣ twice.  Finally, the removal of the 
diagram would allow data gathering on spontaneous student diagram drawing.   
 

2.1.3 Interviewing OSU Content Expert 
 

As specified by the ACER protocol, we interviews a content expert to help us construct the 
ACER rubric for the OSU version of the disk question.  The content expert used was the current 
faculty instructor for Vector Fields.  The researcher interviewed the instructor by posing the 
problem statement as previously seen in figure 2.2.  The content expert solved the problem while 
discussing the reasoning behind each step she took.  Once the content expert completed the 
problem, the researcher asked follow up questions to confirm and clarify the content expert’s 
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reasoning.  The researcher and content expert then discussed the published CU-Boulder’s ACER 
rubric for a similar problem.  After that discussion the ACER rubric for OSU was finalized, 
which can be seen in figure 2.3.   

2.1.4  ACER Rubric 
 

Oregon State University ACER Rubric CU-Boulder ACER Rubric 
A1:  The problem asks for the electric potential. 
 A2:  The problem gives a charge distribution. 
A3:  The charge distribution does not have 
appropriate symmetry to use Gauss’s Law 
effectively.   
A4:  The charge density is not constant, it is 
necessary to find the charge on an infinitesimal 
piece of area and integrate.  

A1:  The problem asks for the electric potential. 
 A2:  The problem gives a charge distribution. 

 
A3:  The charge distribution does not have 
appropriate symmetry to use Gauss’s Law 
effectively.   
A4:  Direct calculation of the potential is more 
efficient than starting with the electric field.   

C1:  Use the geometry of the charge distribution 
to select a coordinate system. 
C2:  Express the differential charge area element 
 .in the selected coordinates ܣ݀
C3:  Select integration limits consistent with the 
differential charge area element and the extent 
of the physical system. 
C4:  Express the difference vector, r-r’, in the 
selected coordinates. 

C1:  Use the geometry of the charge distribution 
to select a coordinate system. 
C2:  Express the differential charge element dq 
in the selected coordinates. 
C3:  Select integration limits consistent with the 
differential charge element and the extent of the 
physical system. 
C4:  Express the difference vector, r-r’, in the 
selected coordinates. 

E1:  Maintain an awareness of which variables 
are being integrated over. (e.g. r’ vs. r). 
 E2:  Execute (multivariable) integrals in the 
selected coordinate system 
E3:  Maintain an awareness that  
 ሺ߮ሻ is an unknown varying surface chargeߪ
density. 

E1:  Maintain an awareness of which variables 
are being integrated over. (e.g. r’ vs. r). 
E2:  Execute (multivariable) integrals in the 
selected coordinate system 
E3:  Manipulate the resulting algebraic 
expression into a form that can be readily 
interpreted. 

 R1:  Verify that the units are correct. 
R2:  Check the limiting behavior to ensure it is 
consistent with the total charge and geometry of 
the charge distribution.   

 R1:  Verify that the units are correct. 
R2:  Check the limiting behavior to ensure it is 
consistent with the total charge and geometry of 
the charge distribution.   

figure 2.3 - Left column: Oregon State University ACER rubric. Right column: CU-Boulder ACER rubric.  Both 
rubrics are made for the disk problem and are in their code forms.  The highlighted codes are difference between 
OSU and CU-Boulder.   
 
The ACER rubric is broken down into activation, construction, evaluation and reflection steps as 
shown in figure 2.3.  These steps reflect the important aspects of each category of the ACER.  
Each step is then given a code and description.  For example, the code C2 for OSU is described 
as: express the differential charge area element ݀ܣ in the selected coordinates. This code 
describes an important aspect of problem solving inside the construction category.   It should be 
noted these steps are descriptive and not explicitly written as statements that have a clear yes-no 
answer for a given student.  This distinction will be discussed further in the analysis and results 
sections. 
 
While the majority of the codes remain the same between OSU and CU-Boulder, there are three 
code descriptions that changed: A4, C2, and E3.  Code A4 for OSU, the charge density is not 
constant, it is necessary to find the charge on an infinitesimal piece of area and integrate, 
highlights OSU’s focus on finding and building ݀ܣ rather than dq.  Code A4 for CU-Boulder, 
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direct calculation of the potential is more efficient than starting with the electric field, possibly 
gives too much credit to the student rationalisation.  If a student is asked to calculated electric 
potential, they will mostly likely activate resources for electric potential. That electric potential 
activation does not necessarily mean that the student knows that path is more efficient. The 
difference in code descriptions for C2 are in OSU’s focus on ݀ܣ rather than a focus on dq, this 
difference is discussed further in a later section.  Finally, the code description of E3 for OSU, 
maintain an awareness that σ(φ)is an unknown varying surface charge density, was changed to 
focus on how students maintained an awareness of ߪሺ߮ሻ since it is an undefined function with a 
߮ dependence.  This replaced the E3 description from CU-Boulder, manipulate the resulting 
algebraic expression into a form that can be readily interpreted.  The question, figure 2.2, after 
students successfully complete their integrals cannot be simplified further.  This made CU-
Boulder’s code description for E3 irrelevant for the OSU problem.   
 
2.2  Data Collection 

 
2.2.1  How the Data was Collected 

 
The question, figure 2.2, was posed to 39 students on the final exam of Vector Fields during Fall 
2015.  Of the 39 students in the Vector Fields class, only 36 agreed to be a part of this research.  
The final exam had 6 questions and students were allotted 120 minutes to complete the test.  See 
Appendix A for the materials given to students.  The completed the exams for students who had 
agreed to participate in research on the Paradigms were scanned, anonymized, and given to the 
researcher.   

 
2.2.2 Information on subjects 

 
The subjects are students 6 weeks into their junior year of physics at Oregon State University.  
These students have completed two paradigm courses: Symmetries and Vector Fields. These two 
paradigm courses are taught back to back in the fall term of student’s junior year.  This totals 6 
weeks of class, giving students a minimum of 42 instructor contact hours.  These courses cover 
mathematical tools/concepts such as: Superposition principle, integral forms of Maxwell’s 
equations, understanding and application of |r-r’|, translating between coordinate systems, power 
series approximation, Gauss’s and Ampere's’ Law, divergence/curl/gradient, boundary 
conditions, and using/interpreting multiple representations of all concepts learned. 
 
During the junior year of physics students are taught the integral forms of the canonical 
electromagnetism equations they were introduced to in their sophomore level physics classes.  In 
the junior year, looking at small bits of charge is always thought of as a small bit of 
length/area/volume (݈݀, ,ܣ݀ ݀߬.) multiplied by a linear/surface/volume charge density.  It is rare 
that dq is discussed in class explicitly as “dq”.  Typically dq is discussed as a 
,′Ԧ′ሻ݈݀ݎሺߣ ,′ܣԦ′ሻ݀ݎሺߪ    .′Ԧ′ሻ݀߬ݎሺߩ	ݎ݋
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2.3  Data Analysis 
 

2.3.1 Application of the OSU ACER Rubric 
 
This section will describe how the OSU ACER rubric was applied to the OSU student data set.  
OSU student data will serve as examples of how the coding applied.  The researcher started by 
looking at individual category (e.g. Activation) and then analyzed the data set for each code. 
After the researcher completely applied all the codes in a single category (e.g. A1-A4 for the 
category of activation), he held discussions with his advisors to discuss any confusion when 
applying codes during the analysis of student work.  The researcher completed this process for 
each of the four categories for the OSU ACER. 
 
 2.3.2: Activation Analysis Methods  
 

A1:  The problem asks for the electric potential 
 A2:  The problem gives a charge distribution. 

A3:  The charge distribution does not have appropriate symmetry to use Gauss’s 
Law effectively.   
A4:  The charge density is not constant, it is necessary to find the charge on an 
infinitesimal piece of area and integrate.  

figure 2.4 - Activation codes 
 
The codes for Activation can be seen in figure 2.4.  A1-A2 are identified inside the problem 
statement (figure 2.2). A1, the problem asks for the electric potential,” is satisfied by part b of 
the problem statement, “(b) Find the electric potential at a distance D above the exact center of 
the disk.”  Code A2, the problem gives a charge distribution, are satisfied by the opening 
problem statement, “Suppose there is a thin disk with a radius R and a surface charge density of 
that changes with angle ߪ= ߪሺ߮ሻ” The last two codes: A3, the charge distribution does not have 
appropriate symmetry to use Gauss’s Law effectively, and A4, the charge density is not constant, 
it is necessary to find the charge on an infinitesimal piece of area and integrate, are both 
identified in student data.  Students successfully activated A3 if they do not attempt to use 
Gauss’s Law; and A4 they activate building ݀ܣ in relation to the surface charge density ߪሺ߮ሻ. 

 
2.3.3: Construction Analysis Methods  

 

C1:  Use the geometry of the charge distribution to select a coordinate system. 
 C2:  Express the differential charge area element ݀ܣ in the selected coordinates. 

C3:  Select integration limits consistent with the differential charge area element and 
the extent of the physical system. 

 C4:  Express the difference vector, r-r’, in the selected coordinates. 

figure 2.5 - Construction codes 
 
The codes for Construction can been seen in figure 2.5.  All the construction steps C1-C4 are 
only identified inside student data.  Identifying C1, use the geometry of the charge distribution to 
select a coordinate system, was done by looking for any signals of a selection of cylindrical 
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coordinate system and by looking for equations for ݀ܣ that contained ߮݀ݎ݀ݎ, or ො߮ , and looking 
for words or pictures that show this selection, as shown in figure 2.6.   
 

 
figure 2.6 - Examples of students successfully showing construction C1, use the geometry of the charge distribution 
to select a coordinate system.  The author has highlighted the relevant text.  A) Shows a transformation into 
cylindrical coordinates from ݀ܣ’. B) Shows a student stating ‘I’ll be using cylindrical’. C) Shows an incorrect 
attempt at generating a generic vector in cylindrical coordinates.  D) Shows a diagram that is constructing ݀ܣ from 
 .Ԧଶ in cylindrical coordinatesݎ݀	&	Ԧଵݎ݀
 
C2, express the differential charge area element ݀ܣ in the selected coordinates, was identified 
by looking at ݀ܣ and how it relates to ߪሺ߮ሻ݀ܣ, as shown in figure 2.6a.  The unpacking of 
 or any combination of symbols and primes to still have an ′߮݀′ݎ݀′ݎሺ߮′ሻߪ must have ܣሺ߮ሻ݀ߪ
appropriate units of charge in cylindrical coordinates.  Identifying C3, select integration limits 
consistent with the differential charge element and the extent of the physical system, this focused 
on the limits of integration matching the proportions of the disk given in the problem statement.  
Integral limits matched the physical properties of the disk. C4, express the difference vector, r-r’, 
in the selected coordinates, was identified by looking how the student found their initial r-r’.  
Students showing the long form in cylindrical with and without simplification were both 
considered correctly achieving C4. 
 

2.3.4: Execution Analysis Methods 
 

E1:  Maintain an awareness of which variables are being integrated over. (e.g. r’ vs. r). 
 E2:  Execute (multivariable) integrals in the selected coordinate system 

E3:  Maintain an awareness that ߪሺ߮ሻis an unknown varying surface charge density. 

figure 2.7 - Execution codes 
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figure 2.8 - Student unsuccessfully executing E1, by not maintaining an awareness of which variables are being 
integrated over.  This can be seen in the first step the student has a ߪሺ߮′ሻ	ܽ݊݀	݀߮. Student successfully executes E2 
and E3.    
 
Execution codes E1-E3 are the broad expert level necessities to successfully compute what was 
“constructed” in the previous step. This is the, “turning the crank on the mathematics” steps.  
Coding for E1, maintain an awareness of which variables are being integrated over (e.g. r’ vs. 
r), was only successfully if students were consistent in their prime notation. If the student was 
inconsistent with their notation at any point during their solution it was considered 
unsuccessfully executing E1, see figure 2.8. Coding for E2, execute (multivariable) integrals in 
the selected coordinate system, was successful if the student integrated correctly, again see figure 
2.8. 
 
Coding for E3, maintain an awareness that σ(φ)is an unknown varying surface charge density, 
the function ߪሺ߮ሻ has an unknown dependence on angle ߮ which makes it impossible to 
integrate with respect to ݀߮.       
 

(eq. 2.1)ܸሺܦሻ ൌ
ଵ

ସగఢబ
ሺ√ܴଶ ൅ ଶܦ െ ׬	ሻܦ 	′߮݀	ሺ߮′ሻߪ

ଶగ

଴
 

 
For a student to get this final equation (2.1), students must have completed the problem correctly.  
This is the final statement after completing the dr’ integration.  Since there is no further 
simplification to be done at this point. 

 
2.3.5: Reflection Analysis Methods 

 

R1:  Verify that the units are correct. 
R2:  Check the limiting behavior to ensure it is consistent with the total charge and geometry 

of the charge distribution.   

figure 2.9 - Reflection codes 
 
Coding R1, any student indication of unit analysis of their final answer would be considered 
successful reflection. Coding for R2, student indication of looking at limiting behavior would be 
considered successful reflection.  
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Chapter 3 - Results 
 
3.1 Results 
 
This section describes the number of students whose results were given particular by the analysis 
of the OSU ACER rubric codes and describes common and/or interesting student difficulties. For 
Activation we provide a breakdown of students choosing to electric field rather than electric 
potential.   For construction, we describe student difficulties producing |ݎԦ െ  Ԧ′|,and student usageݎ
of diagrams.  For execution there will be examples and discussion of how students incorrectly 
evaluated ߪሺ߮ሻ.   Finally for Reflection, we found that none of our students reflected in a manner 
consistent with professionals.  This shows a strong disconnect between the explicit professional 
level reflections versus the type of reflections students are signaling.   
 
As previously discussed, 36 student tests were analyzed using the ACER rubric.  Of these 36 
students, two students showed activation of resources that did not lead them to construct 
anything that would fall under the application of this ACER rubric beyond the Activation stage. 
For example, one student activated Ampere's Law. This ACER rubric does not assist in analysis 
of this work beyond the fact the student activated Ampere’s Law.  While these cases show 
interesting student resource activation, the complete analysis with this ACER rubric did not yield 
significant insight into these student activation missteps.  
 

3.1.1  Activation 
 
Over three-quarters (75%, N=36) of OSU students successfully activated electric potential as 
their primary approach.  Of the remaining students, seven (19%) activated electric field and only 
one of those students attempted Gauss’s Law. There is one student that started with electric field, 
then rejected that approach and switched to electric potential mid problem.  Finally, two students 
left work that was unable to be analyzed using this framework.   
 
These results in activation show OSU students are far more likely to activate the integral form of 
Coulomb's Law for this question rather than Gauss’s Law.  The analysis of the student data 
doesn’t explicitly show that students considered Gauss’s Law and rejected it for this problem.  
The data does support the notion if students happened to consider Gauss’s Law they would 
mostly likely reject using it for this problem.  For the students that were activating electric field 
over electric potential, most chose to attempt to solve the problem by starting with the integral 
form of electric field due to a charge source 
 

(eq. 3.1) ܧሬԦሺݎԦሻ ൌ 	
ଵ

ସగఢబ
׬
ఘሺ௥ԦᇱሻௗఛሬԦᇱ

|௥Ԧି௥Ԧᇱ|మ
ሺݎԦ െ Ԧ′ሻ෣ݎ  

 
While this not an incorrect approach to solve the problem statement they were given, it is a far 
more mathematically difficult path to take to find the electric potential.  These students could be 
activating resources that are chronologically fresher in their minds.   

 
3.1.2  Construction 
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Nearly all students (94%) showed work that could be considered in the category of construction.  
For code C1, use the geometry of the charge distribution to select a coordinate system, all the 
students that attempted construction signaled the use of cylindrical coordinates as their preferred 
coordinate system.  Code C2, express the differential charge area element ݀ܣ in the selected 
coordinates, nine students (25%) had difficulty expressing the infinitesimal area element ݀ܣ.  
These students made one of two errors.  They expressed ݀ܣ with the incorrect dimensions (e.g. 
ܣ݀ ൌ  Otherwise, these students took their answers from part A of the question (Solve .(′߮݀′ݎ݀
for the total charge) and directly substituted that answer into their equations for charge in part B, 
as seen in figure 3.1.    
 

 
Figure 3.1 - Student 29 solves for total charge ‘q’ for part A 
and later substitutes their solution for ‘q’ when trying to find the 
electric potential at point D.  
 
This error is classified as a problem with constructing the infinitesimal area element ݀ܣ.  Student 
29, seen in figure 3.1, when dealing with total charge produces a correct ݀ܣ and also correctly 
finds the total charge of the disk.  However, student 29 falsely believes that they can take the 
total charge with the evaluated integrals and simply substitute that into their electric potential 
equation.   

 
Next for code C3, select integration limits consistent with the differential charge area element 
and the extent of the physical system, 6 students made errors in selecting these limits.  There was 
no single unifying error among these students. Finally, two students produced indefinite 
integrals. Later in execution, these same two students did not attempt to integrate their 
expressions.   
 
Finally for code C4, express the difference vector, r-r’, in the selected coordinates, 13 students 
(36%) had difficulty expressing  ݎԦ െ  Ԧ′. One of the more common issues for OSU students wasݎ
building |ݎԦ െ  Ԧ′| in cylindrical coordinates.  As shown in figure 3.2, a number of students had aݎ
factor of ߮ or ߮′ in the final form of |ݎԦ െ  Ԧ′|.  The student depicted in figure 3.2 starts with theݎ
integral form of Coulomb potential due to a surface charge distribution. They then go on to build 
 .with cylindrical coordinates in mind ′ܣ݀
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Figure 3.2 - Errors building |ݎԦ െ  Ԧ′ in cylindrical coordinates.  They seem toݎ Ԧandݎ Ԧ′|.  The student attempts to buildݎ
be mapping their knowledge for building a vector in Cartesian coordinates directly to making a vector in cylindrical 
coordinates. [emphasis added].  

 
(eq. 3.1) ݀ܣ′	 ൌ  ′߮݀′ݏ݀	ܴ	
 

The student then turns their attention to building |ݎԦ െ  :Ԧ incorrectly asݎ Ԧ′|.  Definingݎ
 

(eq. 3.2) ݎԦ ൌ ݏ̂′ݏ 	൅ ߮′ ො߮ 	൅   ݖ0̂	
 
Then striking out the 0̂ݖ.  They follow by defining ݎԦ′,also incorrectly, as:  
 

(eq. 3.3) ݎԦ′ ൌ ݏ̂ 	൅	 ො߮ 	൅   ݖܼ̂	
 
Then striking out the ̂ݏ and ො߮  to denote the values for both to be zero.  
 
The student has made multiple errors in building these incorrect ݎԦ and ݎԦ′. First, they are mixing 
their prime notation in multiple ways.  The student defines ݎԦ with s’ and ߮′ which strongly 
suggests they want ݎԦ to be descriptive of where the charges are on the disk   They then define ݎԦ’ 
as a vector pointing to the point to be evaluated.  This evidence points towards the student being 
unsure in what they want the prime notation to denote. Second, the student incorrectly evaluates 
a vector based in cylindrical coordinates. The student could also be employing resources for the 
more familiar Cartesian coordinate system and then incorrectly attempting to directly map that 
resource to build ݎԦ and ݎԦ′ in cylindrical coordinates.   
 

(eq. 3.4) ݎԦ ൌ ොݔݔ	 ൅ ොݕݕ ൅ ẑݖ 		→ Ԧݎ ൌ ෝݏ	ݏ 	൅ ߮	 ො߮ 	൅   	ݖ̂	ݖ	
 

(eq. 3.5) ݎԦ′ ൌ ොݔ′ݔ	 ൅ y′ݕො ൅ z′̂ݖ 		→ 	 ′Ԧݎ ൌ ݏ̂	′ݏ 	൅ ߮′	 ො߮ 	൅   	ݖ̂	′ݖ	
 
The errors to produce equations (3.4) and (3.5) reside in the Cartesian understanding that ݔො	݅ݏ	ݔො 
everywhere in space, therefore ̂ݏ	ݏ݅	ݏ̂ everywhere in space as well. That thought process is most 
likely much deeper than what the students were actually consciously thinking.  The more likely 
reasoning is direct pattern matching between the two coordinate systems. The same train of 
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thought would go for how the student defined  ො߮ .  Again in figure 3.3 and also seen in equations 
(3.2) and (3.3), the student does not prime either ̂ݏ or ො߮  in either ݎԦ or ݎԦ′. This further illustrates 
student’s incorrect idea that ̂ݏ and ො߮  are the same everywhere in cylindrical coordinates. 
 
The student then goes back to their previously defined generic definition for electric potential. 
They attempt to evaluate |ݎԦ െ  .Ԧ′ with the student’s derived quantitiesݎ Ԧ, andݎ ,′ܣ݀ Ԧ′|and replaceݎ
 

(eq. 3.6) ܸ ൌ 	ܭ	 ׬ ׬
ఙሺఝሻோௗ௦ௗఝ

|௦ᇱ௦̂ାఝᇱఝෝି௓௭̂|

ோ

଴

ଶగ

଴
	 

 
The current point of interest in equation (3.6) is the |ݎԦ െ  :Ԧ′|evaluationݎ
  

(eq. 3.7) |ݏ̂′ݏ ൅ ߮′ ො߮ 	െ  	|ݖܼ̂
 
To reach the conclusion seen in equation (3.7), the student took ݎԦ from equation (3.2) and 
subtracted ݎԦ′ from equation (3.3) using the same incorrect idea that all ̂ݏ and ො߮are the same in 
cylindrical coordinates.  

 
figure 3.3 - Errors building |ݎԦ െ    .Ԧ′ in cylindrical coordinatesݎ Ԧandݎ Ԧ′|.  The student attempts to buildݎ
 
The student in figure 3.3 also makes a similar error in building ݎԦ and ݎԦ′.  The student incorrectly 
evaluates r in cylindrical coordinates: 
 

(eq. 3.8) ݎԦ ൌ ݎ̂	ݎ ൅ 	߮ݎ ො߮ ൅  ݖ̂	ݖ
In equation (3.8) the term ߮ݎ	߮	ෝ shows the student has some mindfulness of the units that ߮ 
should have associated with it, but does not recognize that this term should not be present at all.  
The student strikes out what quantities in ݎԦ should be zero due to the physical properties of the 
problem, describes their reasoning in words, and then simplify to: 
 

(eq. 3.9)  ݎԦ ൌ  ݖ̂	ݖ
 
Which leads them fortuitously to a correct expression for  ݎԦ.  The student then attempts to build 
 Ԧ′. They start with the same basics as equation (3.8) but with some modifications.  While theݎ
student has scribbled out some work, equation (3.10) is probably what they started out using. 
 

(eq. 3.10) ݎԦ′	 ൌ 	′ݎ̂	′ݎ	 ൅ 	′߮′ݎ ො߮ 	൅  ݖ̂	′ݖ	
 
In figure 3.3 part B, a written statement referencing equation (3.10) is as follows: 
 
“Since the disk is infinitely thin and positioned on the x-y place, it has no z component.” 
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 Their simplified  ݎԦ′ was then defined as: 
 

(eq. 3.11) ݎԦ′ ൌ  ′ݎ̂	′ݎ
 
Again, a correct statement that started off in the wrong place.  To get to the equation (3.11), the 
student zeros out both the ො߮  and ̂ݖ components of their ݎԦ′.  At this point the student has 
distinguished between ̂ݎ	݀݊ܽ		ݎ̂′.  Later it appears they go back over the ො߮  component and 
scribble something out. That scribble could have been produced while the student was writing 
Ԧݎ െ  Ԧ′ as seen in figure 3.4. Some resource was possibly triggered during this time as the studentݎ
erases and rewrites information inside the three lines to produce ݎԦ െ  Ԧ′ and they applied thatݎ
resource to ݎԦ′.  
 

 
figure 3.4 - Student evaluates |ݎԦ െ   Ԧ′| incorrectly.  Theݎ
student abandons their previous ݎԦ′and replaces it with  
a vector in an incorrect invoking of cylindrical coordinates.   
 
In figure 3.4 the same student is evaluating |ݎԦ െ  Ԧ′|, but they abandon what they had originallyݎ
defined as ݎԦ′ in equation (3.10).  Specifically they seem to abandon the idea of ̂ݎ′ being different 
from ̂ݎ.  What caused the student to change their mind is unknown.  This results in the student 
going back to basics of what they defined for a generic ݎԦ n their incorrect version of cylindrical 
coordinates. Where the student defines ݎԦ െ   : Ԧ′ asݎ
 

(eq. 3.12) ݎԦ െ 	′Ԧݎ ൌ ݖ̂	ݖ	 	െ ሺݎ	ݎ̂ 	൅ ߮	 ො߮ 	ሻ 
 
 
This implies the student has now redefined ݎԦ′ to be: 
 

(eq. 3.13) ݎԦ′	 ൌ ݎ̂	ݎ	 	൅ 	߮	 ො߮  
 
This newly defined ݎԦ′ shows that they have removed the ݎ factor that was associated with ߮ݎ	 ො߮  
that showed up in both cases when the student initially defined ݎԦ	ܽ݊݀	ݎԦ′.  The final equation 
(3.14) shows us an addition to their |ݎԦ െ  .Ԧ′|evaluationݎ
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(eq. 3.14) ሬܸԦ ൌ 	
ଵ

ସగఢబ
ݖ̂ ׬ ׬

௤

ඥ௥మ	ା	௥మఝమା	௭మ	

ோ

଴
߮݀ݎ݀ݎ

ଶగ

଴
 

 
As seen in figure 3.4, the student erases, replaces, and/or adds information from equation (3.12) 
through equation (3.14).  At this point the student could have reflected on a lone ߮ଶand was 
dissatisfied at the unit analysis of their |ݎԦ െ  Ԧ′|evaluation in equation (3.14). This may have leadݎ
the student into adding the factor of ݎଶ to equation (3.14) in order for the unit analysis to come 
out more mathematically sound.   
 
As shown, the individual students depicted in figure 3.2 and figure 3.3-3.4 both made very 
similar errors.  The root difficulty stems from their misunderstanding of basis vectors in 
cylindrical coordinates.  The student in figure 3.2 is possibly mapping the Cartesian fact that 
 everywhere as well.  This ݏ̂	ܾ݁	ݐݏݑ݉	ݏ̂ everywhere, therefore in cylindrical coordinates	ොݔ	ݏ݅	ොݔ
thinking is probably deeper than what is actually occurring. While the student in figure 3.3 
initially denotes a difference between ̂ݎ	݀݊ܽ	ݎ̂′in cylindrical coordinates, but later this difference 
is ignored for the more familiar Cartesian coordinate reasoning. This Cartesian sense making is 
clearly more familiar/comfortable to both, if not most, students.     
 

3.1.3  Execution 
 
For E1, maintain an awareness of which variables are being integrated over (e.g. r’ vs. r), a 
large percentage of students (88%) of students did not maintain awareness of the variables being 
integrated over.  These errors mostly consisted of not attempting to use prime notation or just 
dropping the prime notation after the initial construction setup.  It should be noted of the five 
students who correctly answered the problem, only two students correctly maintained the prime 
notation throughout their solutions.  

 
Figure 3.5 -  Student 36 boxes their final solution without  
attempting any integration. 
 
For E2, execute (multivariable) integrals in the selected coordinate system, again a large 
percentage of students (83%) of student did not integrate their expressions in their selected 
coordinate systems correctly.  Six students just setup the integrals but did not attempt to do them, 
as seen in figure 3.5.  The rest of the student errors during integration did not fall into categories.  
Those errors range from dropping factors of two, incorrect ‘u substitution’, and minor math 
errors. There is also overlap in students that did not correctly handle E3. 
 
For E3, maintain an awareness that σ(φ)is an unknown varying surface charge density, roughly 
42% of students correctly maintained an awareness that ߪሺ߮ሻ is a function of surface charge 
density that varies with ߮ in unknown way.  Therefore, this function cannot be evaluated 
completed.  Again, six students did not evaluate their final integrals as seen in figure 3.5.  Aside 
from the non-evaluators, there were three major student errors that occurred for E3.  Students 
(25%) either incorrectly treated ߪሺ߮ሻas a constant, incorrectly invoked the fundamental theorem 
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of calculus, or showed strong confusion over function notation as presented in this problem. The 
rest of the student errors did not fall into categories. 
  
Students that incorrectly treated ߪሺ߮ሻ as a constant all had one common factor in relation to their 
notation, they wrote ߪ in their work instead of the full form ߪሺ߮ሻ.  This is in stark contrast to the 
students that correctly maintained the awareness of ߪሺ߮ሻ.  Students who correctly treated ߪሺ߮ሻ 
as a function dependent on ߮ always wrote ߪሺ߮ሻin it’s full function form.  Students not being 
attentive to the notation for ߪሺ߮ሻ possibly didn’t know what to do with an undefined function 
and just ignored the function notation and treated ߪሺ߮ሻ as just a constant ߪ.  Perhaps they were 
just being careless.  The most troubling reason would be that students did not recognize or 
understand basic function notation. 
 

 
Figure 3.6 - Student 16 incorrectly tries to use the  
fundamental theorem of calculus in an attempt to  
evaluate the integral of ߪሺ߮ሻ	݀߮ from 0 to 2ߨ.     
 
The second common error came from students attempting to leverage the fundamental theorem 
of calculus to help them evaluate an integral they couldn’t evaluate.  As a quick reminder the 
fundamental theorem of calculus is given by: 
 

(eq. 3.15) ׬ ݃ሺݔሻ	݀ݔ
௕

௔
	ൌ ሺܾሻܩ	 െ  ሺܽሻܩ

 
 
Where g(x) is a continuous function and the function G is the antiderivative of the function g 
with respect to x.  Student 16, as seen in figure 3.6, attempts to use the fundamental theorem of 
calculus but makes a significant error in their notation. Just focusing on how the student has dealt 
with ߪሺ߮ሻ aspect of the work in figure 3.6, this relationship shows itself more clearly.   
 

(eq 3.16) ׬ ሺ߮ሻ݀߮ߪ
ଶగ

଴
	ൌ ሻߨሺ2′ߪ	 െ  ሺ0ሻ′ߪ

 
Equation 3.16 shows us the student has denoted the integral of ߪሺ߮ሻ using the prime notation.  
This shows the student has a misunderstanding of what the prime notation when applied to 
functions typically denotes a derivative of a function not a function’s antiderivative.  Let’s look 
at another student who made, what appears to be, a similar error. 
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figure 3.7 - Student 35 appears to repeat the same mistake as Student 16 (figure 3.6).  The important  
difference is the note student 35 leaves on the left hand side of his equation: "ߪ′ሺ߮ሻ ൌ  ."ሺ߮ሻߪ	݂݋	݈ܽݎ݃݁ݐ݊݅
 
Seen in figure 3.7, it would appear student 35 erred in the same fashion as student 16.  However, 
student 35 makes a note of what they are defining the prime notation to mean: 
 

ሺ߮ሻ′ߪ" 	ൌ  "ሺ߮ሻߪ	݂݋	݈ܽݎ݃݁ݐ݊݅	
 
Student 35 redefines what prime notation denotes.  That note makes their entire statement 
correct, if misleading.  It is unknown if the previous student, student 16, had the same idea but 
failed to record the redefining of the prime functionality.   
 
The final common error for dealing with code E3 comes from students viewing ߪሺ߮ሻ as ߪ ∗ ߮.  
Instead of seeing ߪ as a function of ߮, students saw ߪ ൌ ߪ ∗ ߮. This can be seen most clearly in 
three cases shown in figure 3.8. 

 

 
Figure 3.8 - In (A),(B), and (C) three individual students incorrectly treat ߪሺ߮ሻnot as a function but as 
  All three students then carry out the integration on ߮ with respect to ݀߮ while  .߮	ݕܾ	݈݀݁݅݌݅ݐ݈ݑ݉	ߪ
treating ߪ as a constant. 
 
In all three cases, these students treat ߪ as a constant being multiplied by the angle ߮.  While that 
interpretation of ߪሺ߮ሻ is reasonable, it was not the intended interpretation. One of the possible 
reasons for this misunderstanding of function notation could come from the first line of the 
problem statement: “Suppose there is a thin disk with a radius R and a surface charge density 
that changes with angle ߪ ൌ  ሺ߮ሻ.”  This misunderstanding could stem from just a lack ofߪ
confidence, knowledge, or experience with function notation. Another explanation could be that 
students at this level don’t have much experience in dealing with functions that are not explicitly 
defined.  Students could have also been considering what they believed the instructor would give 
them on a final.  Students could think that an undefined function “would not be fair to give on a 
final” and therefore consider the parenthesis not denoting a function but clearly separating the 
variables for multiplication. 
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3.1.4  Reflection 
 
While our students did not reflect as an expert would, as the ACER codes suggest, they did do 
other types of reflection which were not anticipated in the codes.  These reflections are typical of 
student work.  When a final solution given was incorrect, notes such as “I know this is wrong” 
were stated next to solutions.  This type of reflection shows that there is an understanding of 
when something ‘feels’ wrong.  A building of physics intuition that may be the first step toward 
expert level reflection.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



21 

Chapter 4 – Discussion 
 

What method did students activate? 
      

75% Electric Potential 
19% Electric Field 
6%   Unable to analyze 

C1:  Use the geometry of the charge distribution 
to select a coordinate system. 

94% Cylindrical coordinate system 
6%   Unable to analyze 
 

C2:  Express the differential charge area element 
dA in the selected coordinates. 
 

69% Correct dA 
25% Incorrect dA 
6% Unable to analyze 
 

C3:  Select integration limits consistent with the 
differential charge element and the extent of the 
physical system. 
 

71% Correct integration limits 
17% Errors in limit selection 
6% Indefinite Integrals 
6% Unable to analyze 

C4:  Express the difference vector, r-r’, in the 
selected coordinates. 

58% Correct r-r’ 
36% Incorrect r-r’ 
6% Unable to analyze 

E1:  Maintain an awareness of which variables 
are being integrated over. (e.g. r’ vs. r). 
 

6% Maintained awareness 
88% Did not maintain awareness 
6% Unable to analyze  

E2:  Execute (multivariable) integrals in the 
selected coordinate system 
 

14% Correct integration 
63% Incorrect integration 
17% No integration evaluation 
6% Unable to analyze 

E3:  Maintain an awareness that  
 ሺ߮ሻ is an unknown varying surface chargeߪ
density. 

42%  Maintained awareness 
35%  Did not maintain awareness 
17% No integration evaluation 
6% Unable to analyze 

R1:  Verify that the units are correct. 
 

0% Verified Units 

R2:  Check the limiting behavior to ensure it is 
consistent with the total charge and geometry of 
the charge distribution.   

0% Checked limiting behavior 

figure 4.1 - The major results from the analysis of the  OSU ACER rubric. 
 
The main goal of the ACER rubric applied to this student data set was to evaluate if student were 
appropriately choosing the integral form of Coulomb's Law.  The bulk of the results are 
summarized in table 4.1, but let’s look at a few specific results.  For Activation, 75% of students 
activated the integral form of Coulomb’s Law. While only a single student, out of the total of 36, 
is choosing to use Gauss’s Law.  For Construction, 27% of students incorrectly constructed ݀ܽ 
and 36% of student incorrectly constructed |ݎԦ െ  ,Ԧ′|in cylindrical coordinates. For Executionݎ
only 14% of students correctly integrated their expressions and 42% of students correctly dealt 
with ߪሺ߮ሻ as an unknown varying function.  Finally for Reflection, not a single student showed 
evidence of reflection as outlined by the OSU ACER rubric.  
 
My interpretation of these results would be as follows: Are students correctly activating the right 
tools? It seems a majority of our students are correctly going for Coulomb’s Law when it comes 
to approaching this problem.  Once they have activated these tools, are students correctly 
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constructing them with the physical variables given in the problem? Again, it seems a majority of 
our students are correctly choosing an appropriate coordinate system, building dA cylindrical 
coordinates, and choosing appropriate limits of integration when it comes to this disk of charge 
problem. About half of OSU students have difficulty when it comes to constructing |r-r’| in 
cylindrical coordinates for this problem. This is the first red flag.  It should also be noted that 
only 44% of students correctly constructed codes C1 (coordinate system),C2 (dA),C3 (integral 
limits) and C4 (r-r’).  This problem requires that students correctly construct codes C1, C2, C3, 
and C4 in order to successfully solve this problem.  Now on to Execution.  Only 14% of students 
correctly integrated their constructed expressions.  This means that less than half of students that 
correctly constructed the problem were successful at integrating their constructed models.  
Finally starting junior level OSU physics students are not explicitly showing professional 
reflection.  To me, this is expected of a junior level student as they will attempt to give you what 
your prompt asks of them.  My final assessment would be: That about half of our students are 
still struggling with r-r’ in cylindrical coordinates; Over half of our students are having 
difficulties executing integration even with the correct setup.  Armed with the assessment I could 
modify lesson plans to assist students in these perceived gaps.  The ACER Framework has allow 
me to identify many issues with student work and my analysis left me with two large student 
issues that I have identified.   
 
Also over the course of my research, I’ve started to frame my thinking about student thinking in 
terms of the ACER categories of Activation, Construction, Execution, and Reflection.  This 
categorization has been professionally useful in my capacity as a physics tutor and teaching 
assistant.  I tended to think about these sorts of categories in the terms of student thinking, but I 
never had a label to put with it.  For instance, I was assisting a student who was having 
difficulties with a car on a track problem.  They were confused about where to start.  After 
reading the question I can clearly see a method to get to a solution.  Then comes the task of 
assisting the student down the road of understanding.  One of the cardinal sins on this road tutors 
is to do the work for your students.  I rarely sin in this matter anymore, but I still must be 
mindful of the possibility.  The ACER categorizations can helped me be more mindful about 
what is going on each step of the way as I assist in student problem solving.  Has the student 
activated the correct tool? If not, how can I get them to reflect in a way to go to the correct tool?  
They executed the mathematics correctly but constructed an incorrect model, how can I get them 
to reflect on their constructed model to see the error?  In this context, I could be talking a wide 
variety of questions and all which are useful lines of inquiry.  As a non-PER educated 
undergraduate in physics, the ACER framework has given me additional tools in assisting in my 
own understanding of how to frame student thinking.   
 
The ACER framework has given me a new way of framing student thinking that I did have 
before, but did the ACER rubric give me more analytic information than an general analytic  
rubric (see Appendix A)?  I do not believe it did.  I believe if you were to build an emergent 
rubric from the OSU data set, the two big insights would still be: that students have having 
problems with integration and they are incorrectly build r-r’ in cylindrical coordinates.  Of 
course, I have only used the ACER framework to analyze one set of data for one junior level 
physics course.  This far too small of a data set to make a larger generalizations to the ACER 
framework and the rubrics built with the ACER framework to any other type of rubric.  In this 
instance, I do not believe it lent to a deeper insight into student difficulties with Coulomb’s Law. 
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However, I don’t think that’s a negative aspect of the framework.  For someone like myself, I 
believe the ACER framework is an excellent tool novices when it comes to building rubrics and 
interpreting student data.  My discussion with a content expert afforded comparison of my 
problem solving method versus theirs.  This discussion hammers out the different possible 
avenues for problem solving.  Then finding the consensus for the important steps allows for a 
clear description of the said important steps.  This consensus allowed for investigation of 
multiple points of view that I hadn’t considered initially.  This research project has been far more 
educational and informative than just strictly developing an analytic rubric would have ever 
been.   
         
In the future, I would like to use the ACER framework to analyze a different question for 
thermodynamics or electronics.  The outcomes and possible insights that could be gathered for 
either of those subjects would be interesting to evaluate.  A larger data consisting of multiple 
years’ worth of students would be another variation I’d like to investigate.  The results of each 
year’s cohort of students analyzed together and separately would be another aspect for further 
investigation.           
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Appendix  A -- 
 

Three Styles of Rubrics 
Rubrics can be used in nearly any classroom.  While a certain style of rubric may work in the 
realm of mathematics, the same style of rubric may not be appropriate to use in the realm of 
writing.  There are nearly as many styles of rubric as there are classroom settings.  With that in 
mind, this document will describe only 3 specific styles: holistic, analytic, and emergent. 
  
Holistic rubrics are designed to evaluate the assignment as a whole and give general guidelines 
for differing levels of success.  This style of rubric can be attractive to instructors since it is an 
evaluation of the assignment as a whole.  The downside of holistic rubrics are, they only look at 
the assignment as a whole.  For example, two students work on a multi-step physics problem. 
Each student makes an error during integration.  Student A integrates over the incorrect 
variables. Student B integrates over the incorrect limits.  While these are different errors, both 
students ‘integrated incorrectly’.  The holistic rubric would give the students the same evaluation 
since they both ‘integrated incorrectly’ but completed the rest of the problem successfully.  The 
holistic rubric loses fidelity for the sake of a wide evaluation net.   
 
Analytic rubrics are designed to evaluate the different steps of the assignment and give 
guidelines for the differing levels of success for each step.   This style of rubric allows the 
instructor to choose the step granularity for an assignment.  The instructor could evaluate 
‘integration’ as one step or evaluate: ‘choosing correct limits’, ‘integrating over the correct 
variables’, etc. as multiple steps to be individually evaluated for differing levels of success.  The 
evaluation of ‘integration’ as one step still gives the instructor more choices for giving feedback 
than the holistic rubric.  Again using students A and B, the instructor can then choose what level 
of success each student had for the integration step.  The analytic rubric allows for a finer level 
of detail, but it still loses fidelity when it comes to the differing levels of success for a given step.  
The levels of success will not cover every possible error a student can make placed in them.  
 
Emergent rubrics are designed with the data.  Emergent rubrics are not pre-designed based off 
the question, rather these rubrics are created around the answers given.  This style of rubric is 
very flexible as it allows the instructor to set the granularity.  The instructor may choose to give 
each individual student mistake or success its own category.  Once finished, the instructor may 
choose to lump different mistakes together and categorize them as one.  In this way, the 
instructor can see the students’ difficulties as a whole.   
 
All rubrics require a description for differing levels of success.  These differing levels of success 
are usually categorized with a description such as: ‘poor’, ‘average’, or ‘excellent’.  Commonly 
these categories will be labeled just as discrete point values (i.e. ‘1’, ‘2’, or ‘3’).  Each category 
will have a description of what is required to be successful for that category.  While the number 
of categories remain constant throughout the rubric, their descriptions will depend on the step 
they are evaluating. Choosing an odd or even number of categories changes how the step will be 
evaluated.  In choosing an odd number of categories (i.e. ‘1’, ‘2’, ‘3’, ‘4’, or ‘5’) the instructor 
has an easier time evaluating ‘average’ work.  However, if an even number of categories is 
chosen then the instructor must evaluate what is a better than average success and a worse than 
average success. 
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