Using great circles to understand motion on a rotating sphere
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Motion observed in a rotating frame of reference is generally explained by invoking inertial forces.
While this approach simplifies some problems, there is often little physical insight into the motion,
in particular into the effects of the Coriolis force. To aid in the understanding of three-dimensional
inertial forces, motion on a rotating sphere is considered from the points of view of an inertial
observer and of an observer fixed on the sphere. The inertial observer observes the motion to be
along a great circle fixed in the inertial frame, in analogy with simple straight-line motion in the
two-dimensional case. This simple “straight-line” viewpoint of the inertial observer is reconciled
qualitatively and quantitatively with the view of the rotating observer that requires inertial forces in
order to account for the motion. Through a succession of simple examples, the Coriolis and
centrifugal effects are isolated and illustrated, as well as effects due to the curvilinear nature of
motion on a sphere. @000 American Association of Physics Teachers.

[. INTRODUCTION very long distances is required for discernible effects. A
. . ) common pedagogical example of the Coriolis force is a
. Observation of mqtlon from a rotating frame of reference gcket fired from the north pole, which, as shown in Fig. 1,
introduces many curious features. Fundamentally, the acceffjes south in the inertial frame but does not move east along
eration of the rotating observer causes motion that is wellyity the rotating earth, thus landing west of its intended tar-
behaved as viewed by an inertial observer to become digyet. While other examples of the utility of the inertial view-
tinctly nonintuitive when viewed by the rotating observer. point in explaining Coriolis effects have appeared in the
For example, particles upon which no forces act appear to bgerature-? these examples typically emphasize a particular
deflected from their straight line paths. The general approacgspect of the motion, and, like the example of Fig. 1, are not
f[aken to account for this strange behavior is to introdgc%asny generalized.
inertial forces. These new “forces” then enter the equation The aim of this article is to provide simple explanations of
of motion in the rotating frame. While this approach is very tnree-dimensional inertial forces by considering how the in-
powerful in some circumstances, the complexity of the veCtial motion is viewed in the rotating frame. A general
tor cross products and of the resultant coupled differentiafgmework is used to analyze motion on a rotating sphere
equations generally obscures physical insight into the Mofrom the point of view of an inertial observer and to show
tion. Upon introduction to inertial forces, students generallynow that motion corresponds qualitatively and quantitatively
spend more time grappling with the mathematics than undefy the rotating-frame description that invokes inertial forces.
standing the motion. The physical origin of the inertial forces\ye consider the idealized situation of motion on a friction-
is generally only truly understood by viewing the motion in |ess rotating sphere. This “terrestrial ice hockey” example
the inertial frame and then relating that to the noninertialis 5 generalization of the two-dimensional frictionless turn-
view. This approach is common in the case of two-tapje with the simple straight-line inertial motion replaced
dimensional motion on a frictionless turntabfeln that ex- by motion along an inertial great circle. The simplicity of
ample, particles merely travel in straight lines as seen by thgreat circle motion together with a judicious choice of initial
inertial observer. The complicated motion seen by the rotatzongitions permits us to isolate the different inertial forces
ing observer is then just a transformation of the simpleang provide simple qualitative explanations. We then present
straight-line inertial motion into the rotating reference frame.5 guantitative comparison of the motion as viewed in the two
The simplicity of the geometry and of the frame transforma-frames. While the use of great circles in the context of mo-

tion helps students focus on the motion rather than the mathjon on a sphere may appear obvious, instances of such usage
ematics. Understanding of inertial forces in the two-paye peen infrequent:™

dimensional case is also aided by a wide variety of lecture
demonstrations of turntable motidras well as the simple
exercise of playing catch on a merry-go-rodnd.
Unfortunately, physical insight into three-dimensional in- Il ROTATING REFERENCE FRAMES

ertial forces is harder to come by. There are few treatments . . .
that compare the inertial and rotating viewpoints, and there COnsider two coordinate systems whose axes rotate with

are no simple ways to demonstrate the effects of motion on IEFSpeCt to one another and whose origins coincide. Assume

rotating sphere, either in the lecture hall or at the amusemenfi@t One system is an inertial system and let the angular ve-
park. The most common examples of three-dimensional inlocity of the rotating system with respect to the inertial sys-

ertial forces are provided by motion relative to our rotatingtem be@. Considering the motion of a particle at positian
earth. Unfortunately, the small effects arising from the centhe relations between the velocities and accelerations as mea-

trifugal and Coriolis forces on earth are not generally part ofsured in the two coordinate systems‘are

the everyday experiences that we use to build up our physi- /4; dr

cal intuition. Effects upon the weather, ocean currents, rivers, (—) = (—) + WX, (1)
dt inertial dt rotating

and projectile motion are well documentétut motion over
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Fig. 2. (@) Motion of a puck released from rest with respect to a rotating
turntable from positiorA. After a timet, the initial position of the puck has
rotated fromA to A*. The inertial observer sees the puck follow the straight
line from A to C, while the rotating observer sees the puck follow the curved
Fig. 1. A rocket launched along the prime meridian from the North Polepath fromA* to C. (b) Motion of a puck launched with a speedrom the
continues soutlithe medium thickness solid lin@long a meridian fixed in  center of the turntable toward a tardgbn the turntable. After a timg the

the inertial frame. The intended earthbound rofikee dashed linemoves target has rotated frord to B*. The inertial observer sees the puck follow
east with the earth, and the rotating observer sees the rocket follow a curvetle straight line fromA to C, while the rotating observer sees the puck
path (the thickest solid lingthat deflects to the right of the intended path. follow the curved path fronA to C, which deviates from the straight path
from A to B* as expected if rotation is ignored.

d%r d?r tion in an inertial frame. While this is a convenient and pow-
(W) _(—2) + oX(@XT) erful technique, the physical basis for the inertial forces is
inertial rotating often masked by such an approach. Our approach is thus to
dr dé describe the motion in both frames and show how the corre-
+2&,x(—) + —XF. (2 spondence between the two can help to understand the iner-
dt rotating dt tial forces.

The acceleration equation is known as Coriolis’ theorem as it
was presented by Gaspard Gustave de Coriolis in 1838ll. QUALITATIVE DISCUSSION

Hereafter, we ignore the last term to consider only Systems pog,6 aqdressing the problem of motion on a rotating
that rotate ?t a constant angmar velocity. Ln the inertial Sys'sphere, it is instructive to consider first the case of motion in
tem, a particle of masm subject to a forcd= obeys New- g plane. Consider the simplest case of a hockey puck on an

ton’s equation of motion: icy turntable, where friction can be ignored and the force of
d2r R gravity is countered by the normal force of the turntable on
m(—z =F. (3)  the puck. Since there is no net force on the puck, it remains

At/ ertia at rest or continues with constant velocity in the inertial sys-

tem. The acceleration of the rotating observer causes this
simple inertial motion to be seen as curved motion in the
rotating frame, which is explained by invoking inertial
) forces. Figure 2 shows two simple examples that serve to
_ demonstrate centrifugal and Coriolis forces. All the figures in
’Ota"”9(4) this section(Figs. 2 and B represent time durations long
enough for higher-order effects to be evident, but we focus
The rotating observer thus postulates two new forces to exon the lowest-order effects in each case. In Fig) the puck
plain the motion of the particle. These new forces go by gs released from rest with respect to the turntable, at a posi-
variety of names: “inertial” forces, because they represention A, which is a radiuskR from the rotation axis. An ob-
the inertia of the body; “noninertial” forces, because they server on the turntable who is oblivious to the rotatibare-
arise from being in a noninertial frame; or “fictitious” or after referred to as the “nee rotating observerj’ would
“pseudo” forces, because they are artifacts of being in aexpect the puck to remain at rest. An observer in the inertial
noninertial reference frame. The first new term on the rightframe notes that the puck has a tangential velocity compo-
hand side of Eq(4) is called the centrifugal force, nentwR arising from the rotation of the turntable. The iner-
2oy tial observer sees the puck follow the straight path frdho
Feeni= ~ M@X(@XT), © C, while the rotating observer rotates frokto A* and sees
and points away from the axis of rotation. The second newhe puck follow the path fron\* to C, taking it to larger
term on the right-hand side of E(d) is called the Coriolis  radii. The rotating observer aware of the rotatitrereafter
force and is often written as referred to simply as the “rotating observerinvokes the
= oo centrifugal force to explain why the puck drifts to larger
Feor= —2Maxv, ©) radii, Wﬁile the inertial (F))bserver)i:laimspit is a simple cor?se-
whereV, is the velocity relative to the rotating system. The quence of the inertial motion of the puck combined with the
Coriolis force causes deflection perpendicular to the motioracceleration of the rotating observer. In Figb)2the puck is
in the rotating frame. launched from the origin toward a targ@ton the turntable.
These new forces allow one to solve for the motion of aThe nave rotating observer would expect the puck to follow
particle in a rotating frame without any reference to the mo-a straight path, shown in Fig(l® asA to B*, whereB* is

Substitution of Eq(2) into Eq. (3) leads to the equation of
motion in the rotating frame:

(dZF
m —

. dr
=F—maX(oXr)— Zm&»x(—

2 )
rotating
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the rotated inertial position of the target after some titme

The inertial observer sees the puck follow the straight path a) b) a
from A to C, while the rotating observer sees the puck follow B

the curved path fron to C, which clearly misses the target
B*. The rotating observer invokes the Coriolis force to ex-
plain the deflection, while the inertial observer claims it is a
simple consequence of the inertial motion of the puck com-
bined with the acceleration of the target. These two simple
examples illustrate that inertial straight-line motion is trans-
formed into more complicated, and in general curved, mo-
tion when viewed from the rotating frame.

To illustrate the effects of inertial forces in the three-
dimensional case, we choose the simplest example of motiol
on a rotating sphere. In analogy with the two-dimensional
frictionless turntable, we consider particles sliding on a fric-
tionless, rotating sphere of radi&s This is akin to playing
ice hockey on a frozen earth, but frozen before the earth
started spinning so we can ignore the effect of the rotation or
its shape. We require gravity to keep the hockey puck on the
surface, but do not need to know the magnitude of the gravi-
tational acceleration. We require that the puck stays on the
earth, so we consider only velocities, with respect to the
inertial frame, that are less than the orbital velocity. Again,Fig. 3. (a) Motion of a puck launched to the east on a stationary earth. The
in analogy with the two-dimensional case, we consider theduck travels along a great circle path froito B. On a flat earth, the puck
viewpoints of an inertial observer, an earthbound observer","ou'd always travel east and end upFat(b) Inertial view of the motion of

Cgn 2 . a puck released from rest with respect to the rotating earth. The puck travels
?‘ontgti?‘)n nave” earthbound observer who is unaware of the along the inertial great circle path froto C in a timet. After the timet,

) ) the earthbound observer has moved along the original line of latitudeArom
In the inertial frame, the_only forces on the hock_ey p_Utho A*, and has seen the puck move along the path fdnto C. (c) Motion
are the normal force of the ice and the force of gravity. Sinceof a puck that is launched eastward with respect to the rotating earth. The

both forces are radial, there is no torque about the center oluck is launched from positioA at timet=0 toward a target located at
the earth ensuring conservation of angular momentum. Thepesition B. After a timet, the launch site and the target have rotated to
motion 01; the pUCk is therefore in the plane defined by theoositionsA* andB*, respectively. The target on a flat earth would bé& at

oL . HE . (rotated toF* after timet). The inertial observer sees the puck travel along
initial radius vector to the puck and the initial velocity vector the great circle fromA to C, while the earthbound observer sees the puck

of the puck. Since this plane passes through the center of thg, e along the path from* to C, missing the intended target Bt . The
earth, it intersects the surface of the earth in a great circleyuck would end up &€, if the initial velocity with respect to the earth were

The puck thus follows a great circle path in the inertial zero.(d) Motion of a puck that is launched to the north with respect to the
frame. To the extent that we consider a great circle as é&ptating earth. The description of the motion is the same & iabove. The
“straight line” on a sphere, the motion of the puck is analo- flat earth targef is coincident with the targes.

gous to the two-dimensional motion of the puck on the fric-

tionless turntable.

The great circle motion of the puck takes place in theclearly east ofA, but also south of the original line of lati-
inertial frame. A nare earthbound observer would expect thetyde. This appears counterintuitive since we are generally
puck to follow a great circle path with respect to the earth.accustomed to considering the earth as locally flat and to
These two great circles are in general different because thgsing latitude and longitude as rectilinear coordinates, in
rotation of the earth gives the puck an additional eastwargvhich case a puck thrown to the east along a line of latitude
velocity in the inertial frame, resulting in different initial would continue heading east and would arriveFat point
directions of the motion, as viewed in the two frames. Theon the same line of latitude. However, a line of latitude is not
actual motion perceived by the earthbound observer is not a “straight line” on a sphere; this is most obvious near one
great circle, but rather is the transformation of the inertialof the poles. Thus, instead of following a line of latitude to
great circle into the rotating frame. The essence of the aphe east, the puck travels along a great circle or geodesic on
proach in this article is to describe the differences betweethe sphere with no deflections from that “straight line” path.
the path viewed by the earthbound observer and the pathhis great circle path is also related to the line of sight from
expected on a stationary earth. Particular choices of initial towardB. Imagine constructing a vertical tower at position
conditions permit us to isolate and qualitatively describe theB tall enough for the observer Atto see above the horizon.
different inertial forces. Since these are dynamical effectsThe observer af sees the tower when looking directly east,
their demonstration and understanding are generally aided byieaning that a straight line tangent to the circle of latitude at
dynamical presentation. Animations of the figures in this secA intersects the tower. This line projected radially down to
tion (both turntable and spherare available for viewing on the earth’s surface coincides with the great circle path ffom
the World Wide Web?3 to B. Hence, we also refer to this path as the line of sight

To illustrate some basic features of great circle motion, itfrom A to B. Thus, if we call the final position of the puck
is instructive to first consider motion on a stationary sphere(B) along the great circle the “target,” then in simple terms
A puck with an initial velocity to the east follows the great we can say that the earthbound observer saw a target to the
circle path shown in Fig. @). Some time after leaving the east, launched the puck to the east, and hit the target. The
initial position A, the puck arrives at a positidd, which is  puck clearly misses the targétexpected on a flat earth. We
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call the difference between these two targets the curvilineaand the original circle of latitude. The earthbound observer
correction, since it arises from the inherent curvilinear naturattributes the southward displacement to three effects. The
of a great circle on a sphere and the mismatch between theurvilinear correctiorfsee Fig. 8a)] accounts for the differ-
great circle and the supposedly straight lines used in thence between the flat-earth target and the spherical-earth
latitude—longitude coordinate system. A similar effect hasargetB*. The centrifugal effect aloné.e., whenvg=0)
previously been pointed out in the two-dimensional turntablgyoyig cause the puck to end up@g, which corresponds to
problem when the rotating observer uses a curvilinear coOrsqsition C in Fig. 3(b). The additional displacement in lati-
dinate systeri.Another counterintuitive aspect of this effect y,4e 10C is attributed to the Coriolis force that the earth-
on the earth is that if an observer sees a landmark by lookingy,nq observer invokes due to the puck’s motion in the ro-

and southward components, as shown in Fig).3The up-
Sward component again reduces the normal force and hence
e apparent weight of the puck. The southward component
responsible for the displacement of the puck, which is to
the right of the velocity in the rotating fran{a the Northern

the original meridian. Since the meridians are great circle

there is no curvilinear correction for this motion. t
Now consider a rotating earth and a puck that is releasefg

from rest (with respect to the rotating eaijtly an earth-

bound observer at a northern latitudg,;. A nave ez.arth—. _ Hemispherg

bound observer would expect the puck to remain at its initial ' note the similarity of the effects depicted in FiggaB-

location on the earth. An inertial observer notes that the puca%

. In each case the puck finishes south of the original circle
has an eastward speed equal to the speed of the surface of §{&atitude due to its motion along the great circle. Thus the

earth at the initial latitudeyear= @R COSAsia. The puck  inerial observer treats the three cases similarly. On the other
travels along the inertial great circle shown in Figbl3and  hanq, the earthbound observer credits the curvilinear correc-
after some time arrives at positid Durmg that. time, th.e tions of Figs. %) and (c) to the motion of the puck, the
earthbound observer travels along the original line of Iaf‘t“d‘%:entrifugal deflections of Figs(B) and(c) to the rotation of
from the initial position of the pucl to a new positiomA the earth, and the Coriolis deflection of FigcBto the com-

in the inertial frame. Thus the earthbound observer sees thgination of the puck’s motion and the earth’s rotation. The
puck follow the path fromA* to C (not a great circle The  notion that the three effects described by the earthbound ob-
inertial observer explains this relative motion as the differ-server are treated as a single effect by the inertial observer
ence between the great circle path of the puck and the fixegill become more evident in the later quantitative analysis.
latitude of the earthbound observer. The earthbound observer Finally, consider a puck that is launched to the north with
explains the southward motion by invoking the centrifugalrespect to the earth. The maiearthbound observer expects
force [Eq. (5], which points away from the axis of rotation the puck to follow the meridian toward the north pole, as
and has upward and southward components, as shown in Fighown in Fig. 8d) (A to B; rotated toA* to B* after a time
3(b). The upward component simply reduces the normaly | the inertial frame, the rotation of the earth imparts an
force and hence the apparent weight of the puck. The southsasiward velocity component to the puck, causing it to fol-
ward component ls responsible for the southward displaceg, the great circle path from to C shown in Fig. &d). The
ment of C from A™. Note that the westward displacement g4rthhound observer sees the puck head north and then curve
evident in Fig. ) is a higher-order effect caused by the (4 the eastA* to C), ending up south and east of the target
Coriolis force due to the acquired southward motisee the  gxy "0 earthhound observer attributes the southward de-
discussion of north—south motion belvand will not be flection to the centrifugal force, just as in the previous ex-

Z\éflslgitsvlvz;g? we focus on small times in the qu"’lm'tatlveamples, and the eastward deflection to the Coriolis force,

Next consider the case where the earthbound obséaver which is solely to the east for northward velocities. Once
the same northern latitufigives the puck an eastward ve- again, the inertial observer explains the deflections as the

: oo . _difference between the great circle motion of the puck and
Isoucrlgj VbE St%éhﬁtetrrt]i;";%gg \bsepi)seed ff the p#(;l:-, ikn;gﬁ the motion of the intended target. For small times, the iner-
y . X > VET Vearth- 'NE P . tial velocity of the puck is constant in magnitude and direc-

lows the same inertial great circle path as in Fig)3with

an increased speed along the path. Figiigeshows the path tion (this is true for all times in the two-dimensional turn-
. . . o *
of the puck and the initial and final inertial positions of the table exampl Since the target moves in a cirq to B”)

* * along its line of latitude, it has inertial displacements both
earthbound observéA andA™), the targ(ft(B andB”), t.he parallel and perpendicular to the original meridian of longi-
target expe;t_:ted on a flat earf and F*), and the final tude[line AB in Fig. 3(d)]. The perpendicular displacement
!nert!al position of the puckC). Th? pu_ck moves allong Fhe of the target is less than that of the puck since the local earth
inertial great circle fromA to C, which in this case is coin- g0 js smaller at the target. In other words, the difference
cident with the earthbound great circle that the puck would | the azimuthal speeds of the puck and the target causes the
follow on a stationary earth since the initial velocity is to the uck to move east of the target. The displacement of the
east in both frames. After some time, the expected eart '

: rarget parallel to the meridiaAB causes the puck to end up
bound path{A to B) has rotatedit appears a#\* to B*) and st of the target. If the target had moved only perpendicu-
the inertial path fromA to C transformed into the earth frame larly to AB and had the same speed as the puck’s easterly
appears as the path from* to C (which is not a great gpeed, then the puck would have hit the target; but both
circle), taking the puck south of the flat-earth tar€t and  conditions are not true, leading to two effects. The eastward
south of the spherical-earth targgt. Once again, the iner- deflection can equivalently be viewed as a consequence of
tial observer explains the southward relative motiéit (to  the conservation of angular momentdms the puck moves
C) as the difference between the great circle path of the puckorthward, its distance from the axis of rotation decreases, so
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ticles at rest with respect to the rotating earth remain at rest.
For the earthbound observer, this means that there is no net
force on the stationary hockey puck, and hence the centrifu-
gal deflections shown in Fig. 3 are not present on an oblate
earth. For the inertial observer, the net force on a hockey
puck at rest with respect to the oblate earth is toward the axis
of rotation, causing the puck to travel in a circle along its line
of latitude; in contrast to the net radial force on a spherical
earth and the resultant great circle path. The net centripetal
force on the puck is matched to the rotation frequemoyf

the earth, but is not matched should the puck rotate at a
different frequency. This concept provides a common expla-
Fig. 4. () Motion of a puck launched to the east Wit_h an inertial speed equalnation of the Coriolis force from the inertial viewpoigh?.A

;o the speed of the earth at the equator. T_he |ne_rt|a| observer sees the pqubCkey puck launched to the east has an inertial velocity
ollow the great circle showiithe thickest ling while the earthbound ob-

server sees the puck follow the figure-eight path). Motion of a puck faste( than that of the Ioc.al surface of thg earth. The net
launched to the west with a speed slightly less than the local speed of the€ntripetal force that kept it at rest before is now not suffi-
earth. The inertial observer sees the puck move east along the great cirogient to keep the puck traveling in a circle at this speed, so
(the thickest ling while the earthbound observer sees the puck follow thethe puck moves to a larger radius where there is a smaller
westward path spiraling away from the pole. centripetal accelerationv/r). The eastward-launched puck
thus moves southward, explaining the rightward Coriolis de-
flection (in the Northern HemisphereA puck launched to

its angular velocity must increase in order to conserve angu® West is traveling too slowly and moves to a smaller ra-

lar momentum. Since the angular velocity of the tarjeed dius where there is a larger centripetal accel_eratlon. '_I'he

to the earth remains constant, the puck leads the target lon¥eStward-launched puck moves northward, again to the right

gitudinally. (in the Northern Hemlsphe}_eln the rotatlng.frame, the de-
These simple examples of the correspondences betwedfgction of the puck from its intended target is due only to the

the inertial and rotating viewpoints facilitate a qualitative ©0riolis force. This is why discussions of the effects of ro-

understanding of inertial forces and also make it possible t§2tion upon the weather, ocean currents, and rivers on our

explain some other interesting and more general situation9Plate earth invoke only the Coriolis force.

For example, consider a puck launched to the east from a

northern latitude such that the inertial speed is equal to thé/- QUANTITATIVE ANALYSIS

speed of the earth at the equatarR). The puck follows an — Great circles remain the focal point in our quantitative
inertial great circle and takes one day to return to its 'ne”'ahnalysis of inertial forces on a rotating sphere. While the
starting point, at vyhlch time the earthbound observer als%oncept of a great circle is commonly appreciated, the equa-
returns, as shown in Fig(#. The earthbound observer seesjons describing a great circle are seldom documented, so we
the puck follow a figure-eight-shaped path, always tuming toyegin with a presentation of the necessary equations. The

the right in the Northern Hemisphere and to the left in theyqtion of the hockey puck on the frozen spherical earth is
Southern Hemisphere, which is attributed to the combineghen analyzed using the formalism of great circles.

effect of the centrifugal and Coriolis forces. This )
boomerang-type path can be obtained with any initial head?: Great circles

ing, as long as the inertial speed of the puckwiR. Next To describe a general great circle, we use two coordinate
consider a puck launched to the west with a speed slightlgystems as shown in Fig. 5. Both coordinate systems are
less than the local earth speed. The inertial observer sees tfiged with respect to the sphere. The unprimed coordi-
puck travel east very slowly, such that the earth rotates manyate system has its origin at the center of the sphere, with the
times before the puck travels once around the inertial great axis through the North Pole. Points on the sphere are de-
circle. The earthbound observer sees a path headed west aggtibed using the latitude, measured as positiv@egative
slightly south of the original line of latitude, resulting in a for the Northern(Southern Hemisphere, and the longitude
spiral around the pole as shown in Figb# In this case, the ¢, measured counterclockwise from the prime meridian,
earthbound observer sees the puck continually turning to th@hich lies in thexz plane. The equator is the great circle in
right (with respect to the nae earthbound great cirdlesince  the xy plane, and is described simply by=0. Any other
the Coriolis force dominates the centrifugal force. general great circle is considered as the equator in a primed
As a final qualitative note on this hockey puck example,y’y’7' coordinate system, which is obtained by rotating the

we relax the requirement of a sphere and discuss the Consﬁhprimed system first about the axis by an angled,

guences of the oblateness of the real earth. A rotating deénd then about the new’ axis by an angle\, .. Al

formable earth takes on an oblate spheroidal shape because_ . ' . .
ossible great circles can be accessed using rotation angles

the centrifugal force pushes material toward the equaee P X .
Fig. 3b)]. The resultant surface gives rise to a normal force?= ¢0=27 and 0<\yg=m/2. In the primed coordinate

that is no longer purely radial but is tipped slightly toward SYStém, the equation of the great circle is simply=0,

the pole, with a component that tends to cancel the surfacéherex’ and¢’ are the latitude and longitude, respectively,
component of the centrifugal force. An exact analysis mus@s measured in that system. In the unprimed coordinate sys-
also account for the change in gravitational acceleration dutem, this general great circle reaches a maximum latitude
to the equatorial bulge, which causes the bulge to be approximax at @ longitudeg,. By transforming the equation’
mately twice as large as the centrifugal effect alone would=0 back to the unprimed frame or by requiring that the
imply.1! Nonetheless, the shape of the earth is such that panormal vector to the great circle plane be perpendicular to
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a)

inertial

Fig. 5. Coordinate systems for the description of a great circle. The general

great circle(the thickest ling lies in thex'y’ plane. Also shown are the

equator in thexy plane and the line of latitude corresponding to the maxi-

mum latitude\ ., reached by the great circle. The maximum latitude is
reached at a longitude a@f,. The earthbound observer uses ¥¥Z coor-

dinate system with origin at the initial position of the puck. The initial Fig. 6. (
inertial position of the puck is latitudeg,; and longitudepg,; with initial
headings, measured counterclockwise from local east.

a) Initial heading of the puck as measured in inertial and rotating
(earth frames. The puck has velocity componengsand vy to the east and
north, respectively, as measured in the earth frame. The speed of the earth at
the initial puck position ivg, = @R COSAg4- (b) Great circle path of the

puck as seen by an inertial observere thickest ling The puck is launched

from positionA, which rotates to positioA* after a timet. The great circle

any general vector in that plane, it is straightforward to showpath that the puck would follow on a nonrotating earth is shown both at the

that the equation of the general great circle in the unprimedime of launch and after the earth has rotated.
coordinate system can be written as

tan\ =tan\ ;,,,Cog ¢ — ). (7) tanés

tan(¢o— dstard = o> 11
For a dynamical description of motion along a great circle, ST SINN ggart

we also need parametric equations. Motion at a constant

. o , . tané
speedv along the great circle, beginning @&t = ¢¢,at time tan L= — '
t=0, can be described simply by’ (t)= it Qt, tan\ /1 +tarr &
A'(t)=0, where the angular speddi=+v/R and the plus and have been written with the intent of solving them for the
(mlnus) sign denotes motion that is countercloc_k_wﬁsbc_k- parameters\may, ¢o, and ¢l The absolute value in Eq.
wise) when viewed looking down from the positie axis.  (10) ensures thak ;. is within the range 0/2 for all start-
In the unprimed system, the great circle path can be writtefl,g conditions. Since the principal values of the inverse
parametrically as trigonometric functions are limited, one must add or subtract

(12

SINA (1) = SINX 1 COL Lot Q). ®) w,When solving Egs(11) and (12) to find ¢o—<_75stan and
bl fOr the case 4,,< 0. Equation(12) can be written more
tan( gt Q) simply, but the form shown ensures thaf,, takes on the
tan(¢(t) — o) = T oshm 9 proper valuesfor A g,+>0) when the equation is inverted to

find ¢giaqin terms ofhgzrand 6.
To generate the complete great circtlenust be added to the
longitude ¢(t) obtained by solving Eq(9) for part of the
path, since the inverse trigonometric functions have limite
principal values. This is not a problem when solving E). We now apply these great circle equations to the problem
or (8) for . of a hockey puck sliding on an icy, spherical earth that ro-

The above equations describe the great circle and the mdates about the axis (see Fig. $with an angular velocity»

tion along it in terms of the quantitios .y, ¢o, and @l With respect to the inertial frame._The great _Circle _equations
whereas most problems are posed in terms of the initial poderived above are used to describe great circles in both the
SItion A g, b @nd the initial heading, which we denote inertial and rotating frames. We work primarily with the
by the angles with respect to local east. Figure 5 shows anlalitude—longitude coordinate description of the motion,
earthbound reference frame with the origin at the initial po-Which makes the transformation from one frame to the other
sition of the puck and coincident with local easty with ~ Simple—only the longitudinal differencet due to the rota-
local north, andZ with local up(along the radius vectprAs  tion is required. o .
shown in Fig. 5, the initial headingis measured as positive ~_ The motion of the sliding hockey puck is along a great
in the Counterc|ockwise sense toward the north_ The equéllrcle that IS f|Xed N the |nert|a| frame. A naa earthbound

tions relating these two sets of great circle parameters are 0bserver would expect the puck to follow a great circle that
is fixed with respect to the earth. The initial headings of

COSA max=|COSS COSA garl » (100  these two great circles are shown in Figp)6 The heading of

d]3. Terrestrial ice hockey
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the nave earthbound great circle is given by A F A F

vy ® ""~._350urvilinear
tan Seart=—, (13 B
Ve
where vg and vy are the east and north components of the @ Centrifugal
initial velocity of the puck relative to the earth. The rotation &
of the earth causes the inertial observer to measure theg ,,q; v
puck’s initial heading as g
3
N N T Coriolis
tan Sipertia= = . 14 -
nertial VEt Veath VT @R COSAgiart (14
Figure 8b) shows the inertial great circle along which the Y
puck moves, and the naa earthbound great circle at the time st ) p 5 " p
of launch and at a later time after the earth has rotated. In Longitude (degrees)

general, the inertial and earthbound great circles have differ- _ ) _
ent initial headings and so reach different maximum |ati-F'g' 7. Motion of a puck that is launched eastward with respect to the

. P rotating earth for short times. The description of the motion from launch site
tudes. The two headmg[Eqs.(lS) and (14)] are coincident to target is the same as in Fig(cB The arrows indicate the curvilinear

only whenvy=0, i.e., for motion that is initially east or gisplacement of the target from the original line of latitude and the calcu-
west, or whem g,= = 7/2, i.e., for motion from the poles. lated centrifugal and Coriolis displacements of the puck from the target.
The inertial observer notes that the puck has an angular ve-

locity along the inertial great circle of

> rotating earth, while the second-order terms represent the
_r_. V(ve+ @R COSN g+ 1y (15  effects of inertial forces and the curvature of the earth.
"R T R ' First consider the case where the puck is given a velocity
. P o ... _yg in the eastward direction by the earthbound observer. The
The great circles in Fig. 3 used to facilitate the quahtatlvemotion of the puck was depicted in the spherical plot of Fig.

discussion were drawn using the parametric Egsand (9) .
for a great circle. To make quantitative comparisons betweeﬁ(c)' An e_xpa.nded p_Iot of the path of the puck _for ;h_ort times
IS shown in Fig. 7 with an equirectangular projectismple

the rotating and inertial descriptions of the motion we ex- titude ver longitudeand notation ivalent to Fi
pand the equations describing the inertial motion to secon(fi- Ud€ VErsus longitugeand notation equivaient 1o +g.
(c). Since there is only an eastward initial velocity in this

order in the small quantitft. ThIS.er|dS terms of.the Same. case, the expanded equations for the inertial position of the
order as the lowest-order calculations of noninertial effects 'gnuck are

the rotating frame. It is these lowest-order terms that w

compare. These expanded great circle equations giving the = ott Vet 20
inertial position of the puck are (1) = dstarit @ RCOSh o
COS5inertiaI 1
= A Qt——
A= Pstar ‘ COSA start A(t) = Nstar— W(VE'F R Cos}\start)2t2 tan\ s, (21
sin\ tartsin 5inertial COSfsinertial
+022—— , 16 !
cos Nstart (16) AN = Nstart™ ﬁ Vétz tanA geart
)\(t) = )\start+ Qtsin 5inertial_ %taz tan)\startCOSZ 5inertial- 1 WV
(17) -5 w’t? sin)\stancos)\stan—?tz SiNNgar: (22)
Expressing these in terms of parameters measured by the ) S )
earthbound observer results in The inertial observer credits the longitudinal displacement to
” . the initial velocity of the puck, with contributions from the
A1) = it 0L+ vet VE’;Nt SINA start rotating earth’s velocity ¢t, corresponding té to A*) and
RCOSAgar  R®COS Agpan the launch speed with respect to the earth (temgt, corre-
w0 sponding toA* to F*). The inertial observer credits the
+ —Ntztan)\stan, (18) latitudinal displacement to the inertial motion along the great
R circle, which takes the puck south of the original line of
”y latitude. Since the inertial motion is composed of the motion
N =Ngarit St of the puck with respect to the earth and the motion of the
R earth, the squared term of E@1) gives rise to three terms,
as shown in Eq(22). Thus, what the inertial observer credits
- W(VE'F @R COSA g5 °t? tan\ gart- (190  to a single effect, the rotating observer credits to three ef-

fects, which, in order of appearance in Eg2), correspond

In order to illustrate the physical significance of each term into the three effects demonstrated in Fig&) 3(b), and(c),
these expansions, we consider a succession of specializegispectively. The first termix(vg/R)?] corresponds to the
cases with simple initial conditions, as was done in Fig. 3curvilinear effect described above whereby the target seen to
and then finish with the general case. We will see that theéhe east is at a lower latitude. This is depicted in Fig. 7 by the
first-order terms represent the expected motion of the puckrrow between the flat earth targetand the spherical earth
on a stationary flat earth plus the angular displacement of thiargetB. Note that this curvilinear correction becomes zero
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on a flat earth R— =), as one would expect. B
The second term«w?) corresponds to the centrifugal 15.4024

force, which was depicted in Fig(l3. The earthbound ob-

server notes that the surface component of the centrifuga

force points to the south and results in an acceleration of 15.4022 1

o]

Centrifugal

Coriolis C

ay cen= — @R SIN\ COS\ (23

at latitude \. After a timet, this acceleration results in a 15.4020 1

displacement
AY cene= — %wthR SINN gtartCOSN starts (24

where the displacement is assumed to be small enough theE
the latitude can be taken as a constant equal to the startin— = | R
latitude. This southward displacement calculated by the A S
earthbound observer is equivalent to the displacement calcu 15,0J[ OA/ A
lated by the inertial observeA(Y=RA\) using the second e U e oat0 o4z oae  oat7e
correction term in Eq(22) and is represented in Fig. 7 by the Longitude (degrees)

arrow from the final position of the earthbound obser&ér

to the final position the puck would have if it were releasedFig- 8- Moti(r)]n Ol'f adpuck that isflz:]unched tof the Inorthhwith respect to thhe
_ . . rotating earth. The description of the motion from launch site to target is the

from reSt_ (VE__O)’ which is IabeIgcCo. same as in Fig. @l). Both axes are broken in order to show launch and
The third displacement term in EG22) (<wvg) COIMe-  target locations at both times and the small corrections. As shown in the

sponds to the Coriolis force, which was depicted in Fig).3  spherical plot of Fig. &), the paths fronA to C andA* to C are curved, but

The surface component of the Coriolis force results in arin this plot all the curvature is hidden in the broken region of the fitin

acceleration of dotted line$. The arrows indicate the calculated centrifugal and Coriolis

displacements of the puck from the target.

15.4018 4

atitude (degrees)
imammsssaneasnaannaanannn=o)

Ay, co= — 2w Vg SINN (25

at latitude\. After a timet, this acceleration results in a

displacement The expected northward range of the plitdkem in Eq.(29)

AYcor= — 0 Vet? SiNgiar (26) «py] is reduced by the same southward centrifugal deflec-

L . tion calculated abovgEq. (24)]. The longitude exhibits the
where again\ is assumed constant for smallThis south- . :

ward disgplacement again matches the inertial term and igotatlon of the eart_h ‘.(’t) and a correction term that corre-
shown as the arrow ending @tin Fig. 7. The arrows depict- Sponds to the Coriolis force. For a northward velocity, the

ing the other two effects are duplicated at the final IongitudeCorIOIIS force is solely to the eagto the right again, as

to show that all three latitude correction terms contribute toShOWn in Fig. 3d)] and causes an acceleration of
explain the displacement of the pu@R) from the flat earth
target F*). Thus the lowest-order displacements calculated
by a rotating observer using inertial forces agree with theyhich results in an eastward displacement after a tirfaes-
calculation of the inertial observer for short times, and so thggymed sma)l of

two observers agree on the motion of the puck but not on the

ax’COrZZ(J)VN Sin)\, (30)

physics behind the motion. Note that the higher-order west-  AXco,= w vpt? SiNA giart- (31
ward displacement discussed earlier in regard to Fig). i3
not evident for the short times shown in Fig. 7. Both displacements calculated by the rotating observer are

Next consider a puck launched directly north with a speedghown as arrows in Fig. 8, and again agree with the inertial
vy With respect to the earth. In this case, the motion of thedescription of the motion for small times. Note that there is
earth’s surface leads the inertial observer to measure a healdo curvilinear correction in this case since the expected path

ing given by along the meridian is a great circleoincident with the line
of sight to the north
tans. .. = PN VN 27) The general case, where a puck has both eastward and
nertial™, rth @R COSN gar northward velocities, is depicted in Fig. 9. The puck follows

the inertial great circle fronA to C, while the earthbound

in contrast to the earth heading @f,w=90°. The great observer sees the puck follow the path frét to C. The

circle motion of the puck on the earth was shown in Fig. : .
3(d). An expanded vri)ew of the motion for small times ig expected path on a stationary earth is frdfnto B*, and the

. H *
shown in Fig. 8, with notation equivalent to Figid3 Since Eath lexpectedhon a flat earthhls frof hto F (C(I)nstz;nt_
there is only a northward initial velocitin the earth frame ~ heading. For short times, as shown in the main plot of Fig.

in this case, the expanded equations for the inertial positio: the puck(C) ends up south and east of the targBt .
of the puck are The full inertial position Eqs(18) and (19) required here

include all the correction terms discussed in the east and

B Wy, north cases and one new term in the longitudesvy),
PO = bsart o+ R U @Mstar (28 \which is another curvilinear correction and is shown as the
1 arrow ending aB* in Fig. 9. The deflection of the puck from
VN : the targetfor small time$ is a combination of the previously
M) =N garit = t— = ©%t% SINA g4{COSN start- 29 . . :
(D=Nstarrt L= 50 start start (29 discussed terms and includes the southward centrifugal de-
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corrections agree with the rotating observer’s analysis that
invokes inertial forces. The analysis also brings forth effects
due to the curvilinear nature of the motion that are not com-
monly discussed. The recent advent of powerful symbolic
manipulation software makes possible the effective dynami-
cal presentation of these often hard-to-visualize dynamical
effects?®

This approach should be particularly well suited for use in
an intermediate undergraduate mechanics course, which is
usually students’ first introduction to inertial forces. The sim-
plicity of the geometry and of the frame transformations in-
volved should allow students to focus on the physics of the
motion rather than the mathematical complexity of the iner-
tial forces and the resultant equations of motion. The rotating
frame viewpoint may be more appropriate for real world ex-
amples like atmospheric winds and ocean currents, but the
common pedagogical examples used to introduce students to
inertial forces are simple enough to be analyzed in the man-
ner presented here.
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