Required Solution Format:

1. Understand the problem and devise a plan

- a. **Read and translate the problem statement.** Read the problem carefully. What are the key words? What information is given and what will be determined? Translate the problem statement from English into math. Write equations of the form "symbol equals number units". Write "symbol equals ?" to indicate which quantity is to be determined.
- b. Determine applicable concepts and/or laws and assumptions and/or simplifications. Determine which physics concepts and/or laws are involved and what assumptions and/or simplifications can be made about the physical situation in order to apply them. What simplifications are reasonable? Can the sizes of the objects be ignored? Can they be treated as particles? Can friction be ignored? *The assumptions which simplify the problem must be explicitly stated and consistent with the applicable concepts. For example, if momentum conservation is being applied to a system of two cars in a collision, then friction from the road will be ignored since it is an external force and the system has been simplified to have no external forces in order to apply the conservation law.*

2. Represent the problem physically and mathematically

- a. **Represent physically.** Draw an appropriate type of physical representation such as a graph, motion diagram, free-body diagram, energy bar chart, or ray diagram. Include all of the relevant quantities in the diagram. Choose and draw the coordinate axes. Indicate which directions are positive and negative. Force diagrams must have labeled axes and force arrows of representative magnitude and direction with defined labels. For example, if a force vector is labeled F_{eb} , then it must stated that e is the earth and b is the box, or if it is labeled F_g , then it must stated that F_g is the force of gravity acting on the box.
- b. **Represent the concepts and/or laws mathematically.** Use the physical representation to construct a mathematical representation. Make sure that this representation is consistent with the physical representation. For example, if the origin is defined to be above the ground, then an object on the ground will not have zero gravitational potential energy. Always include symbolic mathematical statements from the formula sheet which clearly show what concepts and/or laws are being used to solve the problem. For example, $K = (1/2)mv^2$.

3. Solve for the unknown quantity (or quantities)

a. Solve for the unknown quantity (or quantities) using algebra, geometry, trigonometry and/or calculus. Make sure to include enough steps so that another student in the course could understand the solution. Use consistent units. If the problem has been set up properly, then this step will be purely mathematical. However, you may get stuck and not be able to solve the problem. In that case, go back and check all of the above steps to make sure you haven't overlooked some piece of physics implied by the situation or some relationship such as the force of kinetic friction is proportional to the normal force. Keep symbols in the solution for as long as possible, and, when appropriate, only insert the numerical values at the end. Always include units with any numerical answer.

4. Reflect. Is the answer reasonable? Does it make physical sense?

a. **Evaluate the result.** Is the answer reasonable? Are the units correct? Does the answer make sense in limiting cases? Does the answer make physical sense? *Include a written explanation for why the answer makes sense and what it implies about the physical system.*

Assessment Rubric:

The following table gives the detailed grading rubric that will be used to score homework solutions. 0, 1, 2 or 3 points will be awarded for each of the categories listed on the left. In the cases where 2 and 3 are blank that part of the solution is worth up to only 1 point. The categories correspond to those on the previous page. Use this rubric when writing solutions to assess them and make sure they're complete.

Staple the pages together and submit them on 8.5" x 11" paper with no loose edges. Print	your full name,
studio day and time, and homework assignment number at the top of the first page.	

Points:	0	1	2	3
1 a.	The problem is	A clear translation		
Read and	not translated.	of the problem is		
translate the		given.		
problem				
statement				
1 b.	No information	Only the	Correct assumptions are	Correct assumptions/
State applicable	1s given about	concepts/laws are	given with no	simplifications are given
laws and what	applicable laws	listed with no	information about how	and related to how they
assumptions/	and what	assumptions or	they relate to the	allow the concepts/laws to
simplifications	assumptions/	simplifications, or	concepts/laws that will	be used to solve this
allow them to	simplifications	incorrect	be used, or an important	particular situation.
be used in this	allow them to	information is given.	assumption is missing.	
situation	be used.			
2 a.	No physical	An incorrect	A reasonable physical	A clearly labeled, correct
Represent	representation	physical .	representation is given,	physical representation is
physically	1s given.	representation is	but is not clearly	given, with all relevant
		given, or one that is	labeled, does not define	quantities clearly defined.
		correct, but does not	all quantities, or a clear	
		include any labels or	representation is given	
		defined quantities.	but it contains a mistake.	
2 b. Represent	No	A mathematical		
the	mathematical	representation is		
concepts/laws	representation	given in symbols		
mathematically	is given.	with no numbers.		
3 a.	No solution is	Only a partial	There is some small	A complete solution with
Work through	given.	solution or an	mistake in the solution,	clear mathematical steps is
the		incorrect solution is	or units are neglected, or	given, and the answer has
mathematics		given.	the mathematical steps	correct units.
			are unclear.	
4 a.	No evaluation	Very little	A partial explanation is	A clear and complete
Evaluate the	is given.	information is given	given for why the result	explanation is given for
result		to evaluate the	makes sense (or does not	why the result makes sense
		result.	make sense if the	(or does not make sense if
			incorrect answer was	the incorrect answer was
			reached), and what it	reached), and what it tells
			tells us about the physics	us about the physics of the
			of the situation.	situation.