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ALBERT EINSTEIN AND
“SPOOKY ACTION AT DISTANCE”

• Did not like the probabilistic nature of quantum mechanics.

• Physical object have an abjective reality independent of the measurement.

• Due to superposition principle in quantum mechanics this is not the case:
before the measurement we do not know in what state is our system.

• Einstein: quantum mechanics is incomplete description of a reality.

“I, at any rate, am convinced that He (God) does not throw dice.”
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THE EPR PARADOX (1935)

98 Quantum Spookiness

The experimental situation is depicted in Fig. 4.1 (this version of the EPR experiment is due to 
David Bohm and has been updated by N. David Mermin). An unstable particle with spin 0 decays into 
two spin-1/2 particles, which by conservation of angular momentum must have opposite spin compo-
nents and by conservation of linear momentum must travel in opposite directions. For example, a neu-
tral pi meson decays into an electron and a positron: p0 S e- + e+. Observers A and B are on opposite 
sides of the decaying particle and each has a Stern-Gerlach apparatus to measure the spin component 
of the particle headed in its direction. Whenever one observer measures spin up along a given direc-
tion, then the other observer measures spin down along that same direction. The quantum state of this 
two-particle system is

 0  c9 = 112
 1 0  +91 0  -92 - 0  -91 0  +922  , (4.1)

where the subscripts label the particles and the relative minus sign ensures that this is a spin-0 state 
(as we’ll discover in Chapter 11). The use of a product of kets 1e.g., 0  +91 0  -922 is required here to 
describe the two-particle system (Problem 4.1). The kets and operators for the two particles are inde-
pendent, so, for example, operators act only on their own kets

 S1z 0  +91 0  -92 = 1S1z 0  +912 0  -92 = + U
2

 0  +91 0  -92 , (4.2)

and inner products behave as

 118+ 0 2 8-  0 21 0  +91 0  -922 = 118+
 

0  +912128-  0  -922 = 1. (4.3)

As shown in Fig. 4.1, observer A measures the spin component of particle 1 and observer B mea-
sures the spin component of particle 2. The probability that observer A measures particle 1 to be spin 
up is 50% and the probability for spin down is 50%. The 50-50 split is the same for observer B. For a 
large ensemble of decays, each observer records a random sequence of spin up and spin down results, 
with a 50>50 ratio. But, because of the correlation between the spin components of the two particles, 
if observer A measures spin up (i.e., S1z = +U>2), then we can predict with 100% certainty that the 
result of observer B’s measurement will be spin down (S2z = -U>2). The result is that even though 
each observer records a random sequence of ups and downs, the two sets of results are perfectly anticor-
related. The state 0  c9 in Eq. (4.1) that produces this strange mixture of random and correlated measure-
ment results is known as an entangled state. The spins of the two particles are entangled with each 
other and produce this perfect correlation between the measurements of observer A and observer B.

Imagine that the two observers are separated by a large distance, with observer B slightly farther 
from the decay source than observer A. Once observer A has made the measurement S1z = +U>2, we 
know that the measurement by observer B in the next instant will be spin down 1S2 z = -U>22. We con-
clude that the state 0  c9 in Eq. (4.1) instantaneously collapses onto the state 0  +91 0  -92 , and the measure-
ment by observer A has somehow determined the measurement result of observer B. Einstein referred 
to this as “spooky action at a distance” (spukhafte Fernwirkungen). The result that observer B records is 
still random, it is just that its randomness is perfectly anticorrelated with observer A’s random result. 

AB
Particle 1 Particle 2 

Spin 0
Source 

S2z S1z

FIGURE 4.1 Einstein-Podolsky-Rosen gedanken experiment.

• Alice and Bob measure the spin component of their particles.

• Both have 50% chance to get either spin | "i or | #i.

• Hovewer, because of the “spookiness” of quantum mechanics, whenever
Alice measures spin | "i, Bob with certainty measures spin | #i!

• EPR conclusin: because we can predict the result of an experiment with
certainty, the spin direction of a particle must be determined before mea-
surement (local hidden variable theory).
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THE EPR PARADOX (1935)

EINSTEIN, PODOLSKY, ROSEN

We are thus forced to conclude that the quantum-mechanical description of
physical reality given by wave functions is not complete.

SCHRÖDINGER RESPONSE

I would not call [entanglement] one but rather the characteristic trait of quan-
tum mechanics, the one that enforces its entire departure from classical lines
of thought.

• Particles that interact and then separate leading to the EPR-like results
are called entangled (Verschränkung).
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TENSOR PRODUCT SPACE

POSTULATE 1
The state of a quantum system, including all the information you can know
about it, is represented mathematically by a normalized ket |yi - a quantum
state vector.

• All quantum state vectors belong to a complete vector space (called a
Hilbert space). Completness implies that each ket can be represented as
a superposition of a basis kets:

|yi .
= a|+i+ b|�i
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TENSOR PRODUCT SPACE

• A quantum state of two-particle system is represented as a tensor
product of kets representing each particle, i.e,

|yi = |yi1 ⌦ |yi2 = |yi1|yi2

• An arbitrary state can on a tensor space can be represented as:

|Yi = Â2
i ,j=1 |yii |yij .

6 of 18



TENSOR PRODUCT SPACE

• A quantum state of two-particle system is represented as a tensor
product of kets representing each particle, i.e,

|yi = |yi1 ⌦ |yi2 = |yi1|yi2

• An arbitrary state can on a tensor space can be represented as:

|Yi = Â2
i ,j=1 |yii |yij .

6 of 18



PROPERTIES OF THE TENSOR PRODUCT SPACE

• An operator acting on a tensor produc state acts only on its “own” ket.
For instance, for |Yi .

= |+i1|�i2:

S1z

|Yi =
⇣
S1z

|+i1
⌘
|�i2 =

h̄
2
|+i1|�i2

while
S2z

|Yi = |+i1
⇣
S1z

|�i2
⌘
= � h̄

2
|+i1|�i2.

• An inner product is defined as follows:

hY|Yi .
=

⇣
1h+|2h�|

⌘⇣
|+i1|�i2

⌘
=

⇣
1h+|+i1

⌘⇣
2h�|�i2

⌘
= 1
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SUPERPOSITION VS. MIXTURE ({|+i, |�i})

SUPERPOSITION

|yi .
= 1p

2

⇣
|+i1|+i2 + |�i1|�i2

⌘

|+i1h+|yi = 1p
2
|+i1|+i2

P1+ =
1
2
^ P2+ = 1

|�i1h�|yi = 1p
2
|�i1|�i2

P1� =
1
2
^ P2� = 1

MIXTURE

50 % of |y+i
.
= |+i1|+i2,

50 % of |y�i
.
= |�i1|�i2

|+i1h+|yi = 1p
2
|+i1|+i2

P1+ =
1
2
^ P2+ = 1

|�i1h�|yi = 1p
2
|�i1|�i2

P1� =
1
2
^ P2� = 1
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BELL’S INEQUALITIES (CLASSICALLCY)

• Suppose we measured N = Â8
i=1 N

i

particles:

100 Quantum Spookiness

of measurements from one correlated pair of particles (i.e., one decay from the source) are denoted  
+  - , for example, which means observer A recorded a +  and observer B recorded a - . There are only 
four possible system results: +  + ,  +  - ,  -  + , or  -  - . Even more simply, we classify the results as 
either the same, +  +  or  -  - , or opposite, +  -  or  -  + .

A local hidden variable theory needs a set of instructions for each particle that specifies ahead 
of time what the results of measurements along the three directions an, bn , cn will be. For example, the 
instruction set 1an  + , bn  + , cn  +2 means that a measurement along any one of the three directions will 
produce a spin up result. For the entangled state of the system given by Eq. (4.1), measurements by the 
two observers along the same direction can yield only the results +  -  or  -  + . To reproduce this aspect 
of the data, a local hidden variable theory would need the eight instruction sets shown in Table 4.1. For 
example, the instruction set 1an  + , bn  - , cn  +2 for particle 1 must be paired with the set 1an  - , bn  + , cn  -2 for 
particle 2 in order to produce the proper correlations of the entangled state. Beyond that requirement, 
we allow the proponent of the local hidden variable theory freedom to adjust the populations Ni (or 
probabilities) of the different instruction sets as needed to make sure that the hidden variable theory 
agrees with the quantum mechanical results.

Now use the instruction sets (i.e., the local hidden variable theory) to calculate the prob-
ability that the results of the spin component measurements are the same 1Psame = P+ + + P- -2 
and the probability that the results are opposite 1Popp = P+ - + P+ -2, considering all possible 
orientations of the spin measurement devices. There are nine different combinations of measure-
ment directions for the pair of observers: anan, anbn, ancn, bnan, bnbn, bncn, cnan, cnbn, cncn. If we consider particles 
of type 1 (i.e., instruction set 1), then for each of these nine possibilities, the results are opposite 
(+  - ). The results are never the same for particles of type 1. The same argument holds for type 
8 particles. For type 2 particles, the instruction sets 1an  + , bn  + , cn  -2 and 1an  - , bn  - , cn  +2 yield the
nine possible results +  - ,  +  - ,  +  + ,  +  - ,  +  - ,  +  + ,  -  - ,  -  - ,  -  +  with four possibilities of 
recording the same results and five possibilities for recording opposite results. Thus, we arrive at the 
following probabilities for the different particle types:

 
Popp = 1
Psame = 0

 r  types 1 & 8 

 
Popp =

5
9

Psame =
4
9

t  types 2 S 7 .  

(4.4)

Table 4.1 Instruction Sets (Hidden Variables)

Population Particle 1 Particle 2

N1

N2

N3

N4

N5

N6

N7

N8

1an   + , bn  + , cn  +21an   + , bn  + , cn  -21an   + , bn  - , cn  +21an   + , bn  - , cn  -21an   - , bn  + , cn  +21an   - , bn  + , cn  -21an   - , bn  - , cn  +21an   - , bn  - , cn  -2

1an   - , bn  - , cn  -21an   - , bn  - , cn  +21an   - , bn  + , cn  -21an   - , bn  + , cn  +21an   + , bn  - , cn  -21an   + , bn  - , cn  +21an   + , bn  + , cn  -21an   + , bn  + , cn  +2
9 possible measurement directions:

ââ, âb̂, âĉ, b̂â, b̂b̂, b̂ĉ, ĉâ, ĉb̂, ĉĉ
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P
same

= 0

P
opp

= 1
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BELL’S INEQUALITIES (CLASSICALLCY)

• We can bound probabilities of recording the same and opposite result as
follows:

P
same

=
1
N

⇣
0 ·N1 +

4
9
�
N2 +N3 +N4 +N5 +N6 +N7

�
+ 0 ·N8

⌘
 4

9

P
opp

=
1
N

⇣
1 ·N1 +

5
9
�
N2 +N3 +N4 +N5 +N6 +N7

�
+ 1 ·N8

⌘
� 5

9
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QUANTUM BELL’S INEQUALITIES

|yi .
=

1p
2

⇣
|+i1|�i2 + |�i1|+i2

⌘

P++ =
���
�
1h+|2n̂h+|

�
|yi

���
2
=

1
2

sin2 q

2

P
same

= P++ + P�� =
���
�
1h+|2n̂h+|

�
|yi

���
2
+
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�
1h�|2n̂h�|

�
|yi
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2

and
P+� =
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�
1h+|2n̂h�|

�
|yi

���
2
=

1
2

cos2
q

2

P
opp

= P+� + P�+ =
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�
1h+|2n̂h�|

�
|yi

���
2
+
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�
1h�|2n̂h+|
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|yi
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Experimental Tests of Realistic Local Theories via Bell's Theorem
Alain Aspect, Philippe Grangier& and Gerard Roger
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We have measured the linear polarization correlation of the photons emitted in a radia-
tive atomic cascade of calcium. A high-efficiency source provided an improved statistical
accuracy and an ability to perform new tests. Our results, in excellent agreement with
the quantum mechanical predictions, strongly violate the generalized Bell s inequalities,
and rule out the whole class of realistic local theories. No significant change in results
was observed with source-po1arizer separations of up to 6.5 m.

PACS numbers: 03.65.Bz, 32.50.+d, 32.80.Kf

Since the development of quantum mechanics,
there have been repeated suggestions that its
statistical features possibly might be described
by an underlying deterministic substructure, a
quantum state representing a statistical ensem-
ble of "hidden-variable states. " In 1965 Bell'
showed that any such "hidden-variable substruc-
ture, "if local, yields predictions that differ
significantly from those of quantum mechanics
(QM) in some special situations. Bell's theorem
was extended in 1969 by Clauser, Horne, Shimony,
and Holt2 to cover actual systems, providing an
experimental test for all local hidden-variable
theories. Further generalizations" have pointed
out that determinism is not a crucial feature
leading to the conflict with QM. That is, Bell' s
inequalities have been shown to apply to a broad-
er class of theories: "objective local theories, '"
or "realistic local theories'" that can be tested
in actual experiments. Such experiments are
. realizations of Bohm's "Gedankenexperiment, "'
inspired by the famous paper by Einstein, Podol-
sky, and Rosen. ' A source emits pairs of suit-
ably correlated photons (or spin- —,

' particles in a
singlet state) that separate. One performs cor-
related measurements of their polarizations with
use of remote polarizers (or Stern-Gerlach mag-
nets) in various orientations. For particular sets
of polarizer orientations, the two particle corre-
lations predicted by QM do not obey Bell's theo-
rem.
The first such investigations employed the 2-y

decays produced by ground-state positronium
annihilation. Except for one of them, the experi-
ments" agree with the QM predictions. How-
ever, because of the lack of efficient polarizers
for 0.5-MeV photons, strong supplementary
assumptions are necessary to interpret these
results via Bell's theorem. ' Similarly, an ex-
periment" that uses pairs of protons with corre-
lated spins affords results in agreement with QM,

but requires similar assumptions.
Pairs of low-energy photons emitted in certain
atomic radiative cascades are candidates for
better tests. ' With a reasonable assumption
about the detector efficiencies, "the actual ex-
periments constitute a valuable test of local
realistic theories via Bell's theorem. So far,
four experiments" of this type have been carried
out; three of them have agreed with QM predic-
tions. In the most recent such experiment by Fry
and Thompson (upholding QM), a high pumping
rate of a (J= 1)- (J'= 1)- (J= 0) cascade was
attained using a tunable laser, allowing shorter
periods of data collection (80 min).
In this Letter we report the results of meas-
urements of the polarization correlations of visi-
ble photons emitted in a (J=0) - (J=1) -(J=0)
atomic radiative cascade. The excitation rate is
more than ten times greater than that of Fry and
Thompson. A great variety of tests were thus
performed. In tests analogous to previous ones,
we have attained a statistical accuracy never
heretofore achieved. Data are directly compared
to the QM predictions for the full 360' range of
relative orientations of the polarizers. Moreover,
we have carried out a more general test of Bell' s
inequalities that does not require the assumption
of rotational invariance.
The experiment was performed for various dis-
tances between the source and the polarizers.
For large separations, our results are able to
rule out various hypotheses' '' according to
which a nonfactorizing pure state for two par-
ticles (such as a singlet state) evolves towards
a mixture of factorizing states when the two par-
ticles separate. Accordingly, such a localiza-
tion process then occurs over distances of the
order of the coherence length of the wave packets
associated with the emitted photons. Such a hypo-
thesis has already been tested previously using
pairs of y rays, with conflicting results, ' but
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Bell’s theorem1, formulated in 1964, is
one of the profound scientific discover-
ies of the century. Based on the Ein-

stein, Podolsky and Rosen (EPR) gedanken,
or thought, experiment2, it shifted the argu-
ments about the physical reality of quantum
systems from the realm of philosophy to the
domain of experimental physics. For almost
three decades, experimental tests3 of Bell’s
inequalities have evolved closer and closer to
the ideal EPR scheme. An experiment at the
University of Innsbruck4 has, for the first
time, fully enforced Bell’s requirement for
strict relativistic separation between
measurements.

It all started when Einstein et al. pointed
out that for certain quantum states
(described almost simultaneously by
Schrödinger, who coined the expression
‘quantum entanglement’), quantum
mechanics predicts a strong correlation
between distant measurements. Figure 1
shows a modern version of the EPR situa-
tion, where a pair of entangled photons v1

and v2 are travelling in opposite directions
away from a source. Results of polarization
measurements with both polarizers aligned
are 100% correlated. That is, each photon
may be found randomly either in channel &
or 1 of the corresponding polarizer, but
when photon v1 is found positively polar-
ized, then its twin companion v2 is also found
positively polarized. Because no signal can
connect the two measurements if it travels at
a velocity less than or equal to the speed of
light, c, and because the choice of the direc-
tion of analysis can be made at the very last
moment before measurement while the pho-
tons are in flight, how — argued Einstein —
could one avoid the conclusion that each
photon is carrying a property, determining
the polarization outcome for any direction
of analysis?

This seemingly logical conclusion pro-
vides a simple image to understand the cor-
relations between distant and simultaneous
measurements. But it means specifying sup-
plementary properties (‘elements of reality’
in the words of Einstein) beyond the quan-

tum-mechanical description. To the ques-
tion “Can a quantum-mechanical descrip-
tion of physical reality be considered com-
plete?”2 Einstein’s answer was clearly nega-
tive, but this conclusion was incompatible
with the ‘Copenhagen interpretation’
defended by Bohr, for whom the quantum-
mechanical description was the ultimate
one5. This debate between Einstein and Bohr
lasted until the end of their lives. As it was, it
could hardly be settled, because there was no
apparent disagreement on the correlations
predicted for an EPR gedanken experiment.
The point under discussion was the world-
view implied by the analysis of the situation.

Bell’s theorem changed the nature of the
debate. In a simple and illuminating paper1,
Bell proved that Einstein’s point of view
(local realism) leads to algebraic predictions
(the celebrated Bell’s inequality) that are
contradicted by the quantum-mechanical
predictions for an EPR gedanken experiment
involving several polarizer orientations. The
issue was no longer a matter of taste, or epis-
temological position: it was a quantitative
question that could be answered experimen-
tally, at least in principle.

Prompted by the Clauser–Horne–

Shimony–Holt paper6 that framed Bell’s
inequalities in a way better suited to real
experiments, a first series of tests7, using
photon pairs produced in atomic radiative
cascades, was performed in the early 1970s
at Berkeley, Harvard and Texas A&M. Most
results agreed with quantum mechanics, but
the schemes used were far from ideal; in par-
ticular, the use of single-channel polarizers
only gave access to the & outcome. Progress
in laser physics and modern optics led to a
new generation of experiments carried out
by colleagues and myself at Orsay in the early
1980s. They were based on a highly efficient
source of pairs of correlated photons, pro-
duced by non-linear laser excitations of an
atomic radiative cascade. An experiment
involving two-channel polarizers, as in the
ideal EPR gedanken experiment, gave an
unambiguous violation of Bell’s inequalities
by tens of standard deviations, and an
impressive agreement with quantum
mechanics8.

A third generation of tests, begun in the
late 1980s at Maryland and Rochester9,10,
used nonlinear splitting of ultraviolet pho-
tons to produce pairs of correlated EPR pho-
tons. With such pairs, measurements can
bear either on discrete variables such as
polarization or spin components, as consid-
ered by Bell, or on continuous variables of
the type originally considered by Einstein,
Podolsky and Rosen, and studied at Cal-
tech11. A remarkable feature of such photon
sources is the production of two narrow
beams of correlated photons that can be fed
into two optical fibres, allowing for tests with
great distances between the source and the
measuring apparatus, as demonstrated over
four kilometres in Malvern12 and over tens of
kilometres in Geneva13.

The experimenters at Innsbruck4 used
this method to address a fundamental point
raised by Bell. In the experiment shown in
Fig. 1, where the polarizers’ orientations are
kept fixed during a run, it is possible to rec-
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than ever
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The experimental violation of Bell’s inequalities confirms that a pair of
entangled photons separated by hundreds of metres must be
considered a single non-separable object — it is impossible to assign
local physical reality to each photon.

I II

+

—

+

—
S

x

z

y

ν1
ν2

a b

Figure 1 Einstein–Podolsky–Rosen gedanken experiment with photons. The two photons, v1 and v2,
are analysed by the linear polarizers I and II, which make polarization measurements along a→ and b→

perpendicular to the z axis. Each measurement has two possible outcomes, & or 1, and one can
measure the probabilities of single or joint measurements at various orientations a→ and b→. For an
entangled EPR state, violation of a Bell’s inequality indicates that the strong correlations between the
measurements on the two opposite sides cannot be explained by an image ‘à la Einstein’ involving
properties carried along by each photon. In the Innsbruck experiment4, any possibility of
communication between the polarizers, at a velocity less than or equal to that of light, is precluded by
random and ultrafast switching of the orientations of the polarizers, separated by a distance of 400
m. On each side, a local computer registers the polarizer orientation and the result of each
measurement, with the timing monitored by an atomic clock. Data are gathered and compared for
correlation measurements after the end of a run.
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CONCLUSION

EINSTEIN:
“I, at any rate, am convinced that He (God) does not throw dice.”

BOHR:
“Einstein, don’t tell God what to do.”
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