PH425 Spins Homework 4
 Due 1/22/16@4pm

REQUIRED:

1. Show that the kets $|+\rangle_{y}$ and $|-\rangle_{y}$ defined by
form an orthonormal basis for the vector space of two-component complex vectors, i.e.
(a) Show that $|+\rangle_{y}$ and $|-\rangle_{y}$ are normalized.
(b) Show that $|+\rangle_{y}$ and $|-\rangle_{y}$ are orthogonal.
(c) Show that $|+\rangle_{y}$ and $|-\rangle_{y}$ are complete, i.e. that any vector in the vector space can be written as a linear combination of these two vectors.
2. Show that the matrix

$$
A \doteq\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

is a linear operator on the space of all vectors, i.e.:
(a) Show that

$$
A\left(\left|v_{1}\right\rangle+\left|v_{2}\right\rangle\right)=A\left|v_{1}\right\rangle+A\left|v_{2}\right\rangle
$$

(b) Also show that

$$
A\left(\lambda\left|v_{1}\right\rangle\right)=\lambda A\left|v_{1}\right\rangle
$$

3. Using the Spin 1 version of the Spins simulation, find the probabilities for the projection of the spin onto all three standard axes for unknowns $\left|\psi_{1}\right\rangle$ and $\left|\psi_{3}\right\rangle$. Use these probabilities to write the unknowns in the z-basis.
4. If a beam of spin- $3 / 2$ particles is input to a Stern-Gerlach analyzer, there are four output beams whose deflections are consistent with magnetic moments arising from spin angular momentum components of $\frac{3}{2} \hbar, \frac{1}{2} \hbar,-\frac{1}{2} \hbar$, and $-\frac{3}{2} \hbar$. For a spin- $3 / 2$ system:
(a) Write down the eigenvalue equations for the S_{z} operator.
(b) Write down the matrix representation of the S_{z} eigenstates.
(c) Write down the matrix representation of the S_{z} operator.
(d) Write down the eigenvalue equations for the S^{2} operator.
(e) Write down the matrix representation of the S^{2} operator.

CHALLENGE:

5. Using the Spin 1 version of the Spins simulation, find the probabilities for the projection of the spin onto all three standard axes for the unknown $\left|\psi_{2}\right\rangle$. Use these probabilities to write the unknown in the z-basis.
