PH425 Spins Homework 6

Due 1/29/16 at 4 pm

REQUIRED:

1. Consider a spin- $1 / 2$ particle with a magnetic moment. At time $t=0$, the state of the particle is $|\psi(t=0)\rangle=|+\rangle$.
(a) If the observable S_{x} is measured at time $t=0$, what are the possible results and the probabilities of those results?
(b) Instead of performing the above measurement, the system is allowed to evolve in a uniform magnetic field $\vec{B}=B_{0} \hat{y}$. Calculate the state of the system after a time t using the S_{z} basis.
(c) At time t, the observable S_{x} is measured. What is the probability that a value $\hbar / 2$ will be found?
(d) Draw a schematic diagram of this experiment, similar to Fig. 3.2.
2. Consider a two-state quantum system with a Hamiltonian

$$
H \doteq\left(\begin{array}{cc}
E_{1} & 0 \tag{1}\\
0 & E_{2}
\end{array}\right)
$$

Another physical observable A is described by the operator

$$
A \doteq\left(\begin{array}{ll}
0 & a \tag{2}\\
a & 0
\end{array}\right)
$$

where a is real and positive. Let the initial state of the system be $|\psi(0)\rangle=\left|a_{1}\right\rangle$, where $\left|a_{1}\right\rangle$ is the eigenstate corresponding to the larger of the two possible eigenvalues of A. What is the frequency of oscillation of the expectation value of A ? Compare this frequency to the Bohr frequency.
3. A quantum mechanical system starts out in the state:

$$
\begin{equation*}
|\psi(0)\rangle=C\left(3\left|a_{1}\right\rangle+4\left|a_{2}\right\rangle\right) \tag{3}
\end{equation*}
$$

where $\left|a_{i}\right\rangle$ are the normalized eigenstates of the operator A corresponding to the eigenvalues a_{i}. In this $\left|a_{i}\right\rangle$ basis, the Hamiltonian of this system is represented by the matrix:

$$
H \doteq E_{0}\left(\begin{array}{ll}
2 & 1 \tag{4}\\
1 & 2
\end{array}\right)
$$

(a) If you measure the energy of this system, what values are possible, and what are the probabilities of measuring those values?
(b) Find the state from the previous part as a function of time.
(c) Calculate the expectation value $\langle A\rangle$ of the observable A as a function of time. (This part of the problem is a Challenge. It is NOT required. If you can do this, you can do anything!)

