Series Solutions of Linear ODEs

Consider the standard form of the $2^{\text {nd }}$ order, linear, ordinary differential equation:

$$
\begin{equation*}
1 y^{\prime \prime}+P(z) y^{\prime}+Q(z) y=0 \tag{1}
\end{equation*}
$$

(Note the coefficient 1 in front of the second derivative term. Warning: Use this form to classify the singularities, but clear denominators in $P(z)$ and $Q(z)$ before trying a series solution.)

Theorem: The solution to equation (1) can only have singularities where the coefficients $P(z)$ and $Q(z)$ have singularities.

If $P(z)$ has a pole of order m and $Q(z)$ has a pole of order n, then equation (1) can be rewritten:

$$
\begin{equation*}
1 y^{\prime \prime}+z^{-m}\left(p_{0}+p_{1} z+\ldots\right) y^{\prime}+z^{-n}\left(q_{0}+q_{1} z+\ldots\right) y=0 \tag{2}
\end{equation*}
$$

Definition: If $m \leq 1, n \leq 2$ at a singularity z_{0}, then z_{0} is called a regular singularity or regular singular point.

Theorem: If z_{0} is a regular singular point, then then a series solution of equation (1) expanded around z_{0} consists of either:

1. two Frobenius series,
2. one Frobenius series $y_{1}\left(z-z_{0}\right)$ and a second solution $\left.y_{2}\left(z-z_{0}\right)=y_{1}(z-z)\right) \ln \left(z-z_{0}\right)+y_{0}\left(z-z_{0}\right)$ where $y_{0}\left(z-z_{0}\right)$ is a second Frobenius series.
