Definitions for Ordinary Differential Equations

1. A differential equation is an equation involving an unknown function and its derivatives.
2. A differential equation is an ordinary differential equation if the unknown function depends on only one independent variable, otherwise it is a partial differential equation.
3. The order of a differential equation is the order (number of derivatives taken) of the highest derivative appearing in the equation.
4. The degree of a differential equation that can be written as a polynomial in the unknown function and its derivatives is the power to which the highest order derivative is raised.
5. An $n^{\text {th }}$ order differential equation is linear if it has the form

$$
a_{n}(x) y^{(n)}(x)+a_{n-1}(x) y^{(n-1)}(x)+\ldots+a_{0}(x) y(x)=b(x)
$$

A linear equation is homogeneous if $b(x)=0$
6. A solution of a differential equation in the unknown function y and the independent variable x on the interval I is a function $y(x)$ that satisfies the differential equation identically for all x in I.
7. A particular solution is any one solution. The general solution is the set of all solutions.
8. An initial value problem is a differential equation together with conditions (known as initial conditions) on the unknown function and its derivatives all at the same value of the independent variable.
9. A boundary value problem is a differential equation together with conditions (known as boundary conditions) on the unknown function and its derivatives at more than one value of the independent variable.
(c)Corinne A. Manogue, 2012

