
Notice the conventional factor of −h̄2. h̄ is a constant, 1.05459 × 10−27 erg-
sec = 6.58217 × 10−16 eV-sec. Notice that the dimensions of h̄ are those of
angular momentum. With this definition, (79) becomes:

∇2 =
1

r2

∂

∂r

(

r2 ∂

∂r

)

− 1

h̄2r2
L2

op (81)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.1 Practice Problems

1. Review the definition of spherical coordinates. Remember that in our
conventions θ is always the angle measured from the z axis and ranges
from 0 to π. φ is the angle in the x-y plane measured from the x axis
towards the y axis and ranges from 0 to 2π.

2. Review the definition of gradient and divergence in spherical coordi-
nates. See Griffiths E&M, Appendix A, for a nice derivation. What is
the fastest place to look-up expressions for gradient, etc. in spherical
and cylindrical coordinates?

3. Using the definition of gradient (77) and divergence (78) in spherical
coordinates, derive equation (79).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 SEPARATION OF VARIABLES

“Separation of variables” is a procedure which can turn a partial differential
equation into a set of ordinary differential equations. The procedure only
works in very special cases involving a high degree of symmetry. Remarkably,
the procedure works for many important physics examples. Here, we will use
the procedure on the Schrödinger equation in a central potential. Because
there are several dimensions, the procedure requires a number of rounds, each
consisting of the same set of six steps. In the first round, we will separate
out an ordinary differential equation in the time variable.

Step 1: Write the partial differential equation in appropriate coordinate
system. For Schrödinger’s equation in any potential we have:
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HopΨ = ih̄
∂Ψ

∂t
(82)

Step 2: Assume that the solution Ψ can be written as the product of
functions, at least one of which depends on only one variable, in this case t.
The other function(s) must not depend at all on this variable, i.e. assume

Ψ(r, θ, φ, t) = ψ(r, θ, φ)T (t) (83)

This is a very strong assumption. Not all solutions will be of this form.
However, it turns out that all of the solutions can be written as linear com-
binations of solutions of this form. The study of when and why this works is
called Sturm-Liouville theory.

Plug this assumed solution (83) into the partial differential equation (82).
Because of the special form for Ψ, the partial derivatives each act on only
one of the factors in Ψ.

(Hopψ)T = ih̄ψ
dT

dt
(84)

Any partial derivatives that act only on a function of a single variable may
be rewritten as total derivatives.

Step 3: Divide by Ψ in the form of (83). Many, many students forget
this step. Don’t be one of them! The rest of the procedure doesn’t work if
you do.

1

ψ
(Hopψ) = ih̄

dT

dt

1

T
(85)

Step 4: Isolate all of the dependence on one coordinate on one side of
the equation. Do as much algebra as you need to do to achieve this. In our
example, notice that in (85), all of the t dependence is on the right-hand side
of the equation while all of the dependence on the spatial variable is on the
other side. In this case, the t dependence is already isolated, without any
algebra on our part.

Step 5: Now imagine changing the isolated variable t by a small amount.
In principle, the right-hand side of (85) could change, but nothing on the left-
hand side would. (This argument is the magic of the separation of variables
procedure–compare it to arguments about constants of the motion from clas-
sical mechanics.) Therefore, if the equation is to be true for all values of t,
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the particular combination of t dependence on the right-hand side must be
constant. By convention, we call this constant E.

1

ψ
(Hopψ) = ih̄

dT

dt

1

T
def
= E (86)

In this way we have broken our original partial differential equation up into a
pair of equations, one of which is an ordinary differential equation involving
only t, the other is a partial differential equation involving only the three
spatial variables.

1

ψ
Hopψ = E (87)

ih̄
dT

dt

1

T
= E (88)

The separation constant E appears in both equations.
Step 6: Write each equation in standard form by multiplying each equa-

tion by its unknown function to clear it from the denominator.

Hopψ = Eψ (89)

dT

dt
= − i

h̄
ET (90)

Notice that (89) is an eigenvalue equation for the operator Hop. You may
never have thought of the derivation of this “time independent version of the
Schrödinger equation” from the Schrödinger equation as just a simple exam-
ple of the separation of variables procedure. At the moment, the eigenvalue
E could be anything. Much of the rest of the Paradigm will be directed
toward finding the possible values of E!

Now we must repeat the steps until each of the variables has been sepa-
rated out into its own ordinary differential equation. In the next round, we
will isolate the r dependence.

Step 1: Since we want to isolate the r dependence, we must rewrite Hop

to show the r dependence explicitly using (81)

− h̄2

2µ

[

1

r2

∂

∂r

(

r2 ∂

∂r

)

− 1

h̄2r2
L2

op

]

ψ + U(r)ψ = Eψ (91)

Step 2: Assume ψ(r, θ, φ) = R(r)Y (θ, φ).

− h̄2

2µ

[

1

r2

d

dr

(

r2dR

dr

)

Y − 1

h̄2r2
R(L2

opY )

]

+ U(r)RY = ERY (92)
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Step 3:

− h̄2

2µ

[

1

r2

d

dr

1

R

(

r2dR

dr

)

− 1

h̄2r2

1

Y
(L2

opY )

]

+ U(r) = E (93)

Step 4: To isolate the r dependence we must first clear the r dependence
from the angular term (involving angular derivatives in Lop and angular
functions in Y ). To do this, we need to multiply (93) by r2 to clear this
factor out of the denominators of the angular pieces. Further rearranging
(93) to get all of the r dependence on the right-hand side, we obtain:

− 1

h̄2

1

Y
(L2

opY ) = − d

dr

(

r2dR

dr

)

1

R
− 2µ

h̄2 (E − U(r))r2 (94)

Step 5: In this case, I have called the separation constant A.

− 1

h̄2

1

Y
(L2

opY ) = − d

dr

(

r2dR

dr

)

1

R
− 2µ

h̄2 (E − U(r))r2 def
= A (95)

In principle, A can be any complex number.
Step 6: Rearranging (95) slightly, we obtain the radial and angular

equations in the more standard form:

d

dr

(

r2dR

dr

)

+
2µ

h̄2 (E − U(r))r2R + AR = 0 (96)

L2
opY + h̄2AY = 0 (97)

Notice that the only place that the central potential enters the set of differ-
ential equations is in the radial equation (96). (96) is not yet in the form
of an eigenvalue equation since it contains two unknown constants E and A.
(97) is an eigenvalue equation for the operator L2

op with eigenvalue h̄2A; it is
independent of the form of the central potential.

In the last round, we must separate the θ dependence from the φ de-
pendence. I will leave this as an important Practice Problem. The answer
is:

sin θ
d

dθ

(

sin θ
dP

dθ

)

− A sin2 θP −BP = 0 (98)

d2Φ

dφ2
+BΦ = 0 (99)
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(99) is an eigenvalue equation for the operator d2/dφ2 with eigenvalue B.
(98) is not yet in the form of an eigenvalue equation since it contains two
unknown constants A and B.

We started with a partial differential equation in four variables and we
ended up with four ordinary differential equations (90), (96), (98), (99) by in-
troducing three separation constants (E, A, and B). You should always get
one fewer separation constant than the number of variables you started with;
each separation constant should appear in two of the final set of equations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.1 Practice Problems

1. Work carefully through all of the derivations in this section.

2. Use the separation of variables procedure on (97) to obtain (98) and
(99).

3. Consider the problem of the motion of a quantum particle of mass µ
confined to move on a ring of radius r0. Redo the separation of variables
procedure in this section, assuming that r = r0 is a constant and θ = π

2

is a constant so that Ψ = T (t)Φ(φ) only. How do the equations you
get differ from the equations of this section? The solutions of these
equations will be the subject of the next section.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Motion on a Ring

See Goswami, §9.3.
The solution of the Schrödinger equation for the hydrogen atom is full of

complicated special functions. Therefore, let’s build up to the hydrogen atom
gradually, one dimension at a time, so we can see how the various pieces fit
together.

First, consider the problem of the motion of a quantum particle of mass µ
confined to move on a ring of constant radius r0. As with classical orbits, let’s
assume that the ring lies in the x− y plane, so that in spherical coordinates
θ = π

2
=const. Then, since Ψ is independent of r and θ, derivatives with
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