## Definitions for Normed Vector Spaces

A set of objects (vectors) $\{\vec{u}, \vec{v}, \vec{w}, \ldots\}$ is said to form a linear vector space over the field of scalars $\{\lambda, \mu, \ldots\}$ (e.g. real numbers or complex numbers) if:

1. the set is closed, commutative, and associative under (vector) addition;
2. the set is closed, associative, and distributive under multiplication by a scalar;
3. there exists a null vector $\overrightarrow{0}$;
4. multiplication by the scalar identity 1 leaves the vector unchanged;
5. all vectors have a corresponding negative vector;

An inner product $\langle\vec{u} \mid \vec{v}\rangle$ is a generalization of the dot product with the following properties:

$$
\begin{gathered}
\langle\vec{u} \mid \vec{v}\rangle=\langle\vec{v} \mid \vec{u}\rangle^{*} \\
\langle\vec{u} \mid \lambda \vec{v}+\mu \vec{w}\rangle=\lambda\langle\vec{u} \mid \vec{v}\rangle+\mu\langle\vec{u} \mid \vec{w}\rangle
\end{gathered}
$$

