Wronskians

Definition: A set of n functions y_1, \ldots, y_n on an interval I are *linearly dependent* if there exist constants $\alpha_1, \alpha_2, \ldots, \alpha_n$, not all zero, such that

$$\alpha_1 y_1 + \alpha_2 y_2 + \dots + \alpha_n y_n = 0$$

Otherwise the functions are linearly independent.

Definition: If a set of n functions y_1, \ldots, y_n on an interval I each have n-1 derivatives, then the determinant $W(y_1, \ldots, y_n)$, defined below, is called the Wronskian of the set of functions.

$$W(y_1, \dots, y_n) \doteq \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y'_1 & y'_2 & \dots & y'_n \\ \vdots & \vdots & \vdots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix}$$
(1)

Theorem: If y_1, \ldots, y_n are solutions of L(y) = 0 on I, then they are linearly independent $\iff W(y_1, \ldots, y_n)$ is not identically zero on I.

Note: This theorem is only valid of the functions y_1, \ldots, y_n are all solutions of the *same* n^{th} order linear ODE.