Boundary Conditions for P.D.E.'s

Elliptic Equations

Example: Poisson's Equation

$$
\nabla^{2} \psi\left(x_{k}\right)=f\left(x_{k}\right)
$$

Theorem: If $\psi\left(x_{k}\right)$ satisfies Poisson's equation throughout a closed, bounded region R and satisfies Dirichlet conditions on the the boundary ∂R of R, then ψ is unique.

Theorem: If $\psi\left(x_{k}\right)$ satisfies Poisson's equation throughout a closed, bounded region R and satisfies Neumann conditions on the the boundary ∂R of R, then ψ is unique up to an additive constant.

Corollary: If the boundary is piecewise smooth, you can specify either Dirichlet or Neumann conditions on each piece. If Dirichlet conditions are satisfied on at least one piece then ψ is unique.

Corollary: If the region R is unbounded (in some or all directions) but $\psi=o\left(r^{-1 / 2}\right)$ as $r \rightarrow \infty$ (i.e. ψ falls off faster than $r^{-1 / 2}$) in the unbounded directions, then ψ is unique.

Parabolic Equations

Example: Inhomogeneous Diffusion Equation

$$
\left(\frac{\partial}{\partial t}-k \nabla^{2}\right) \psi\left(t, x_{k}\right)=f\left(x_{k}\right)
$$

Theorem: If $\psi\left(t, x_{k}\right)$ satisfies the inhomogeneous diffusion equation throughout a closed, bounded region R and satisfies either Dirichlet or Neumann conditions on the the boundary ∂R of R, and ψ satisfies the initial condition

$$
\psi\left(t=0, x_{k}\right)=g\left(x_{k}\right)
$$

then ψ is unique.
Corollary: If the spatial boundary is piecewise smooth, you can specify either Dirichlet or Neumann conditions on each piece.

Corollary: If the region R is unbounded (in some or all spatial directions) but $\psi=o\left(r^{-1 / 2}\right)$ as $r \rightarrow \infty$ (i.e. ψ falls off faster than $r^{-1 / 2}$) in the unbounded directions, then ψ is unique.

Hyperbolic Equations

Example: Inhomogeneous Wave Equation

$$
\left(\frac{-1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}+\nabla^{2}\right) \psi\left(t, x_{k}\right)=f\left(x_{k}\right)
$$

Theorem: If $\psi\left(t, x_{k}\right)$ satisfies the inhomogeneous wave equation throughout a closed, bounded region R and satisfies either Dirichlet or Neumann conditions on the the boundary ∂R of R, and ψ satisfies the two initial conditions

$$
\begin{gathered}
\psi\left(t=0, x_{k}\right)=g\left(x_{k}\right) \\
\frac{\partial \psi}{\partial t}\left(t=0, x_{k}\right)=h\left(x_{k}\right)
\end{gathered}
$$

then ψ is unique.
Corollary: If the spatial boundary is piecewise smooth, you can specify either Dirichlet or Neumann conditions on each piece.

Corollary: If the region R is unbounded (in some or all spatial directions) but $\psi=o\left(r^{-1 / 2}\right)$ as $r \rightarrow \infty$ (i.e. ψ falls off faster than $r^{-1 / 2}$) in the unbounded directions, then ψ is unique.

