PH461 Math Methods Capstone Homework 1 Due 4/4/16 4 pm

PRACTICE:

1. Quiz 1

Express each of the following complex numbers in rectangular form, i.e. in the form x + iy where x and y are real.

- (a) $3e^{2(1+i\pi)}$
- (b) $3e^{i\pi} + 3e^{-i\pi}$

Express each of the following complex numbers in exponential form, i.e. in the form $re^{i\phi}$ where r and ϕ are real.

(a) $\frac{2+3i}{1-i}$

REQUIRED:

2. Rectangular Form of Complex Functions

- (a) Evaluate the complex number $w = \sin(3+2i)$ in the form w = u + iv for u and v real. State whether it is pure real, pure imaginary, or complex. You do not need to find the numerical value of complicated **real** valued transcendental expressions, but do simplify them as much as possible. Check your answer using Mathematica or Maple.
- (b) Evaluate the complex function $w(z) = \sin(x + iy)$ in the form w = u + iv for u and v real. State for which values of z the value of the function is pure real, pure imaginary, or complex. Check your answer using Mathematica or Maple.

3. Large Powers of Complex Numbers

- (a) Evaluate the complex number $w = \left(\frac{1-i}{\sqrt{2}}\right)^{40}$ in rectangular form, i.e. in the form w = u + iv with u and v real.
- (b) Evaluate the complex number $w = (z)^{40}$ in rectangular form, i.e. in the form w = u + iv with u and v real.

4. Differential Equations Derivation of Euler's Formula

Show that the functions $\sin \theta$, $\cos \theta$, $e^{i\theta}$, and $e^{-i\theta}$ all solve the same differential equation. Use this result and appropriately chosen boundary conditions to "derive" Euler's formula.

5. Complex Roots

Show that the sum of the three cube roots of 8 is zero. Make a sketch of the roots.

6. Transcendental Functions of a Complex Variable

Express each of the following complex numbers in rectangular form, i.e. in the form u + iv where u and v are real. State whether each number is pure real, pure imaginary, or complex. Also state whether it is single or multiple-valued. You do not need to find the numerical value of complicated **real**-valued transcendental expressions, but do simplify them as much as possible. Check your answers using a computer algebra system such as *Mathematica* or *Maple*.

(a) $w = \ln(3+2i)$

(b)
$$w = \sin^{-1} 3$$

(c)
$$w = i^{3+2i}$$