# PH461 Math Methods Capstone Homework 3 <br> Due 4/18/16, 3:50 pm 

## PRACTICE:

## 1. Quiz 3

Write out the first four nonzero terms in the series:
(a)

$$
\sum_{n=0}^{\infty} \frac{1}{n!}
$$

## Solution:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{1}{n!} & =\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots \\
& =1+1+\frac{1}{2}+\frac{1}{6}+\ldots
\end{aligned}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}
$$

## Solution:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} & =\frac{-1^{1}}{1!}+\frac{-1^{2}}{2!}+\frac{-1^{3}}{3!}+\frac{-1^{4}}{4!}+\ldots \\
& =-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}+\ldots
\end{aligned}
$$

## 2. Quiz 3

Write the following series using sigma ( $\sum$ ) notation.
(a)

$$
1-2 \theta^{2}+4 \theta^{4}-8 \theta^{6}+\ldots
$$

## Solution:

$$
\sum_{n=0}^{\infty}(-2)^{n} \theta^{2 n}
$$

(b)

$$
\frac{1}{4}-\frac{1}{9}+\frac{1}{16}-\frac{1}{25}+\ldots
$$

## Solution:

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}}
$$

## 3. Quiz 3

## Memorized Power Series

Look up and memorize the power series for $e^{z}, \ln (1+z), \sin z, \cos z$, and $(1+z)^{p}$. For what values of $z$ do these series converge? Do these functions have singularities in the complex $z$ plane? How are any singularities related to the region of convergence?

## 4. Evaluate Gamma and Beta Functions

Find the value of the following functions at the indicated points. Use technology or tables, but make sure you know a way to do this.
(a) $\Gamma(4.2)$
(b) $\Gamma(-2.2 i)$
(c) $B(4.2,-2.2 i)$

## REQUIRED:

## 5. Integrals Involving Gamma and Beta Functions

Evaluate the following integrals using gamma and beta functions. It is not sufficient to look up the answer in a table of integrals or to use Mathematica or Maple, but you can use these resources to get a hint, if necessary.
(a) $\int_{0}^{\infty} x^{2} e^{-x^{2}} d x$
(b) $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin ^{3} x \cos x} d x$
(c) $\int_{0}^{1} x^{2}\left(1-x^{2}\right)^{\frac{3}{2}} d x$
(d) $\int_{0}^{1}(\ln x)^{\frac{1}{3}} d x$
6. Power and Laurent Series

Consider the function

$$
w(z)=\frac{1}{z^{2}-5 z+6}
$$

(a) Find a power or Laurent series for the function $w(z)$ above, expanded around $z=0$, for each annular ring where a series is defined.
(b) Find a power or Laurent series for the function $w(z)$ above, expanded around $z=2$, for each annular ring where a series is defined.

