Due 4/18/16, 3:50 pm

PRACTICE:

1. Quiz 3

Write out the first four nonzero terms in the series:

(a)

$$\sum_{n=0}^{\infty} \frac{1}{n!}$$

Solution:

$$\sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$
$$= 1 + 1 + \frac{1}{2} + \frac{1}{6} + \dots$$

(b)

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$$

Solution:

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n!} = \frac{-1^1}{1!} + \frac{-1^2}{2!} + \frac{-1^3}{3!} + \frac{-1^4}{4!} + \dots$$
$$= -1 + \frac{1}{2} - \frac{1}{6} + \frac{1}{24} + \dots$$

2. Quiz 3

Write the following series using sigma (\sum) notation.

(a)

$$1 - 2\theta^2 + 4\theta^4 - 8\theta^6 + \dots$$

Solution:

$$\sum_{n=0}^\infty \, (-2)^n \, \theta^{2n}$$

(b)

$$\frac{1}{4} - \frac{1}{9} + \frac{1}{16} - \frac{1}{25} + \dots$$

Solution:

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n^2}$$

3. Quiz 3

Memorized Power Series

Look up and memorize the power series for e^z , $\ln(1+z)$, $\sin z$, $\cos z$, and $(1+z)^p$. For what values of z do these series converge? Do these functions have singularities in the complex z plane? How are any singularities related to the region of convergence?

4. Evaluate Gamma and Beta Functions

Find the value of the following functions at the indicated points. Use technology or tables, but make sure you know a way to do this.

- (a) $\Gamma(4.2)$
- (b) $\Gamma(-2.2i)$
- (c) B(4.2, -2.2i)

REQUIRED:

5. Integrals Involving Gamma and Beta Functions

Evaluate the following integrals using gamma and beta functions. It is **not** sufficient to look up the answer in a table of integrals or to use *Mathematica* or *Maple*, but you can use these resources to get a hint, if necessary.

- (a) $\int_0^\infty x^2 e^{-x^2} dx$ (b) $\int_0^{\frac{\pi}{2}} \sqrt{\sin^3 x \cos x} dx$ (c) $\int_0^1 x^2 (1-x^2)^{\frac{3}{2}} dx$ (d) $\int_0^1 (\ln x)^{\frac{1}{3}} dx$
- 6. **Power and Laurent Series** Consider the function

 $w(z) = \frac{1}{z^2 - 5z + 6}$

(a) Find a power or Laurent series for the function w(z) above, expanded around z = 0, for each annular ring where a series is defined.

(b) Find a power or Laurent series for the function w(z) above, expanded around z = 2, for each annular ring where a series is defined.