PH461 Math Methods Capstone Homework 6

Due 5/9/16 3:50 pm

PRACTICE:

1. Quiz 6

For a given change of variables, e.g. $z = e^x$ or $u = 2\sqrt{x}$, find

$$\frac{d}{dx}$$
 and $\frac{d^2}{dx^2}$

REQUIRED:

2. Wave Equation

Consider the equation

$$\frac{\partial^2 \phi}{\partial x^2} - \frac{\partial^2 \phi}{\partial t^2} = 0$$

(a) Change variables in the equation above to new coordinates u, v defined by

$$u = \frac{1}{2}(x+t)$$
 $v = \frac{1}{2}(x-t)$

(b) From your new equation, show that the general solution can be written

$$\phi(u, v) = f(u) + g(v)$$

where f and g are arbitrary functions.

(c) In your solution, change variables back to x and t. Interpret your solutions in terms of left-moving and right-moving waves.

3. Second Derivative Change of Variables

If $x = e^u \cos \theta$ and $y = e^u \sin \theta$, show that

$$\frac{\partial^2 \phi}{\partial u^2} + \frac{\partial^2 \phi}{\partial \theta^2} = (x^2 + y^2) \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} \right)$$

4. Polar Form of Cauchy-Riemann Equations

From the rectangular form of the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

derive the polar form:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

Hint: This problem is essentially an exercise in the partial derivative chain rule.

5. RL Circuit

In an RL circuit a resistor and inductor are connected in series. Using Kirchoff's Law, a differential equation describing this circuit can be written as $L\frac{dI(t)}{dt} + RI(t) = V(t)$. Assuming the voltage is not dependent on time, solve for the current as a function of time.

6. Second Order Homogeneous Differential Equations with Constant Coefficients

For the following second order equations with constant coefficients, solve for the general solution. For reference, see Boas 8.5.

(a) a'' + 2a' - 3a = 0

$$y + 2y - 3y = 0$$

- y'' + 9y = 0
- (c)

$$y'' + 8y' + 16y = 0$$

7. Second Order Inhomogeneous Differential Equations with Constant Coefficients

For the following inhomogeneous linear equations with constant coefficients, find the general solution for y(x). See Boas 8.5-8.6 for reference.

(a)

(b)
$$y'' + 2y' - y = \sin x + \cos 2x$$
$$y''' - y'' - y' + y = 2e^x$$