PH461 Math Methods Capstone Homework 7
 Due Tuesday 5/16/16, 3:50 pm

PRACTICE:

1. Quiz 7

1-D Change of Variables

Consider a differential equation such as:

$$
x^{2}\left(\frac{d^{2} y}{d x^{2}}\right)+2 x\left(\frac{d y}{d x}\right)-5 y=0
$$

You want to make the change of variable $x=e^{z}$ to find a differential equation with z as the independent variable. As part of this process, you need to transform the derivatives

$$
\frac{d}{d x} \quad \text { and } \quad \frac{d^{2}}{d x^{2}}
$$

to derivatives with respect to z. This quiz asks you to do just part of the change of variables procedure, i.e. to transform these derivatives (for any given change of variables).

Solution:

$x=e^{z}$ means that $z=\ln (x)$. Therefore, $\frac{d z}{d x}=\frac{1}{x}=e^{-z}$.

$$
\begin{aligned}
\frac{d}{d x} & =\frac{d z}{d x} \frac{d}{d z} \\
& =e^{-z} \frac{d}{d z}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}} & =\frac{d z}{d x} \frac{d}{d z}\left(\frac{d z}{d x} \frac{d}{d z}\right) \\
& =e^{-z} \frac{d}{d z}\left(e^{-z} \frac{d}{d z}\right) \\
& =e^{-2 z} \frac{d^{2}}{d z^{2}}-e^{-2 z} \frac{d}{d z}
\end{aligned}
$$

REQUIRED:

2. Hermite Polynomials

The differential equation for Hermite polynomials $H_{n}(x)$ is given by

$$
H_{n}^{\prime \prime}-2 x H_{n}^{\prime}+2 n H_{n}=0
$$

Use series methods to find a polynomial solution of this differential equation for the case $n=4$. For what values of x is your solution valid?

3. Laguerre Polynomials

The differential equation for Laguerre polynomials $L_{m}(z)$ is given by

$$
z L^{\prime \prime}+(1-z) L^{\prime}+n L=0
$$

Find a polynomial solution of this differential equation for the case $n=4$. For what values of z is your solution valid?

4. Hermite Polynomials

(a) Use Mathematica or Maple to find the first 5 Hermite polynomials.
(b) Use Rodrigues' formula to calculate the first 5 Hermite polynomials. (You are encouraged to use Mathematica or Maple to help with the derivatives.
(c) Look up two recurrence relations for Hermite polynomials and use them to find $H_{3}^{\prime}(x)$ assuming that all you know is that $H_{0}(x)=1$ and $H_{1}(x)=2 x$. Do this part of the problem by hand.

