Overview of Storage Development DOE Hydrogen Program

Safe, efficient and cost-effective storage is a key element in the development of hydrogen as an energy carrier

George Thomas
Sandia National Laboratories
Livermore, CA

Hydrogen Program Review San Ramon, CA May 9-11, 2000

Hydrogen storage requires something more than a can or a bucket

Hydrogen has the highest mass energy density of any fuel: 120 MJ/kg (LHV) 144 MJ/kg (HHV)

however

At ambient conditions (300 K, 1 atm.): the energy content of 1 liter of H2 is only 10.7 kJ, three orders of magnitude too low for practical applications.

Issues:

- 1. What are the options available for storage?
- 2. What are the theoretical limits to storage density and how close can we come?
- 3. How do we organize a development program to achieve adequate stored energy in an efficient, safe and cost-effective manner?

Mass energy densities for various fuels

		Fuel	Hydrogen weight fraction	Ambient state	Mass energy density (MJ/kg)
molecular wt.		Hydrogen	1	Gas	120
	•	Methane	0.25	Gas	50 (43) ²
		Ethane	0.2	Gas	47.5
		Propane	0.18	Gas (liquid) ¹	46.4
		Gasoline	0.16	Liquid	44.4
ncreasing		Ethanol	0.13	Liquid	26.8
2		Methanol	0.12	Liquid	19.9

- (1) A gas at room temperature, but normally stored as a liquid at moderate pressure.
- (2) The larger values are for pure methane. The values in parantheses are for a "typical" Natural Gas.

Maximum energy density is achieved in liquid state

Fuel	Hydrogen weight fraction	Ambient state	Liquid volumetric energy density (MJ/liter)	Hydrogen volumetric energy density in liquid (MJ/liter)
Hydrogen	1	Gas	$8.4 - 10.4^3$	$8.4 - 10.4^3$
Methane	0.25	Gas	21 (17.8) ²	12.6 (10.8) ²
Ethane	0.2	Gas	23.7	12
Propane	0.18	Gas (liquid) ¹	22.8	10.6
Gasoline	0.16	Liquid	31.1	13.2
Ethanol	0.13	Liquid	21.2	12.3
Methanol	0.12	Liquid	15.8	11.9

- (1)A gas at room temperature, but normally stored as a liquid at moderate pressure.
- (2) The larger values are for pure methane. The values in parantheses are for a "typical" Natural Gas.
- (3) The higher value refers to hydrogen density at the triple point.

Hydrogen energy content in liquid fuels

Fuel	Hydrogen weight fraction	Ambient state	Liquid volumetric energy density (MJ/liter)	Hydrogen volumetric energy density in liquid (MJ/liter)
Hydrogen	1	Gas	$8.4 - 10.4^3$	8.4 – 10.4 ³
Methane	0.25	Gas	21 (17.8) ²	12.6 (10.8) ²
Ethane	0.2	Gas	23.7	12
Propane	0.18	Gas (liquid) ¹	22.8	10.6
Gasoline	0.16	Liquid	31.1	13.2
Ethanol	0.13	Liquid	21.2	12.3
Methanol	0.12	Liquid	15.8	11.9

Hydrogen density is nearly the same in all fuels.

This narrow range suggests a natural benchmark for comparison of storage performance.

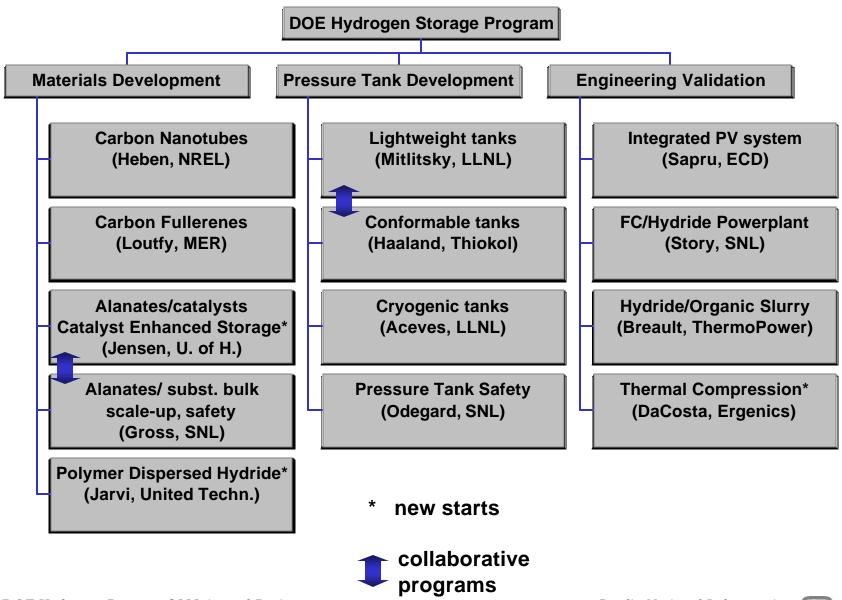
Maximum storage densities (w/o system)

Energy Density MJ/liter

•	High	pressure	gas
---	------	----------	-----

 ambient temperature 	3600 psi: 2.0	5000 psi: 2.75
cryogenic system	150 K: 3.5	20 K: 8.4
Liquid hydrogen	8.4	

- Reversible storage media
 - carbon structures
 - nanotubes
 - fullerenes
 - hydrides
 - intermetallics
 - alanates 8.25
 - composite materials
- Chemical methods
 - liquid fuel + reformer
 - off-board reprocessing


1	0.	8	-	1	2.	0	

<u>Eff</u> .	<u>gasoline</u>	<u>methanol</u>
50%:	6.6	5.9
75%:	9.9	8.9
	2	

Programmatic guidelines

- A balanced program between scientific discovery and engineering validation is needed.
 - Portion of program invested in high risk approaches.
 - Collaboration with industry at all levels.
 - International partnerships beneficial.
 - Leverage off other programs.
- Program should not downselect technologies too early
 - Options should be fully explored.
 - Different technologies suited for different applications.
- Realistic goals should be set as metrics for progress.
 - Evaluate goals on a continuing basis
 - continue to refine roadmap

Materials Development

Carbon nanotubes

M. Heben, NREL

- near-term goal: ~6 wt.%
- synthesis, processing, hydrogen absorption/desorption
- Carbon fullerenes

R. Loutfy, MER

- feasibility of fullerene-based storage
- Alanate hydrides

C. Jensen, Univ. of Hawaii

- NaAlH4 : 5.5 wt.% hydrogen capacity
- catalysts, properties
- Hydride development

K. Gross, SNL

- near-term goal: 5.5 wt.% at <100 C (NaAlH4)
- bulk synthesis, scaled-up beds, characterization, safety studies
- Catalytically enhanced storage

C. Jensen, Univ. of Hawaii

- new start
- Polymer dispersed metal hydrides
- T. Jarvi, United Technologies

new start

Pressure Tank Development

Lightweight tanks

- F. Mitlitisky, LLNL
- goal: >10 wt.% 5000 psi
- Conformable tanks

- R. Golde, Thiokol Propulsion Co.
- high pressure tanks with improved packing efficiency
- cryogenic hydrogen vessels S. Aceves, LLNL
 - design and testing for improved volume density
- Composite tank testing B. Odegard, SNL
- - comparison of high pressure hydrogen tank failure to other fuels. CNG, gasoline, methanol.

Engineering Validation

PV/electrolysis/metal hydride

- K. Sapru, ECD
- modeling and integration of storage with renewable energy sources
- Metal hydride/ organic slurry

- R. Breault, Thermo Power
- chemical hydride for PEMFC vehicles
- hydrogen transmission and storage
- Fuelcell/hydride powerplant

- G. C. Story, SNL
- for underground mine and tunneling locomotive
- Thermal hydrogen compression

D. DaCosta, Ergenics, Inc.

new start

Other hydrogen storage programs (US)

DOE/OTT

Fuels for Fuel Cells Program (P. Devlin)
 Parallel development of fuel processor and onboard H storage.

DOE/OIT

Low cost hydrides for mine vehicles (SRTC)
 Part of Mining Industry of the Future initiative.

IEA

- Task 12 will be completed Oct. 2000
- New task being formed: Advanced Solid and Liquid State Hydrogen Storage Materials (G. Sandrock)
- Industry Projects

Other hydrogen storage programs (non US)

- Canadian Projects
 - Alanates (A. Zaluska, McGill Univ.)
 - Nanocrystalline Mg-based hydrides (Hydro-Quebec)
 - Carbon adsorption (IRH)
- European Projects
 - liquid hydrogen storage (BMW)
 - refueling station (BMW)
- WENET (Japan)
 - Metal-H complex ions (S. Suda, Kogakuin Univ.)
 - others

Some highlights from this year

- Continuing progress in nanotubes
 - high purity synthesis and processing methods.
 - > 6 wt.% appears feasible.
- Important progress achieved on alanates
 - 5.5 wt.% at low temperatures appears feasible.
- Continued improvement in lightweight and conformable tanks
 - more efficient packing of high pressure tanks
- integration of storage with applications
 - PV system
 - mine vehicle
- Three new starts
 - catalyst enhanced storage
 - polymer dispersed hydride
 - thermal hydrogen compression