
Conversion of the Kinetic Energy of Wind, Rivers and Tides

The Earth as a Heat Engine

When the earth absorbs sunlight, electromagnetic energy is converted to heat. This is a conversion
from an organized form of energy to a disorganized form. Through evaporation, convection and
large scale weather phenomena, the earth acts as a heat engine to convert some of this thermal
energy into the kinetic energy of the wind and rivers. Human conversion of this energy of motion
in a particular direction into mechanical work on an electrical generator and then into electrical
energy is governed by a few simple principles.
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Figure 1: The great earth heat engine converts thermal energy to kinetic energy of the wind and
rivers and the energy of waves.

Extraction of Mechanical Power from a Moving Fluid

To approach the topic of tapping the kinetic energy and power of a moving fluid, such as water, it
is convenient to begin by considering the fluid to consist of moving blocks. A rectangular volume
of water of cross-sectional area A and length L in the direction of motion has the mass

m = ρV = ρAL ,

where ρ is the density and V is the volume. The kinetic energy of the object moving at speed v is

KE =
1

2
mv2 =

1

2
ρALv2 .

If t is the time for the object to pass by, the power of the moving object is

P =
KE

t
=

1

2
ρ
L

t
Av2 .

W. M. Hetherington 1 17 May 2005



Since the length of the object is just the speed multiplied by the time for the object to pass by,
L = vt, the power becomes

P =
1

2
ρAv3 .

Thus, the first important result is that the power of moving fluid is proportional to the density,
the cross-sectional area and v3.

Not all of the kinetic energy of a river or a moving steam of air can be extracted for a very
simple reason. Consider water flowing in a channel with a constant cross-sectional area. If all of
the kinetic energy was extracted at a particular point in the channel the water would cease to flow.
Since water is not infinitely compressible, complete conversion is impossible. Suppose instead that
the speed of the water, initially at v1, is reduced not to 0 but to v2. Assuming that the density
of water is constant, the flow before the extractor, in m3/s, must be equal to the flow after the
extractor. Thus, in a given time t, the input flow V1/t must equal the output flow V2/t. Expressing
the volumes in terms of the input and output cross-sectional areas and speeds,

V1

t
=

V2

t
⇒

A1v1t

t
=

A2v2t

t
⇒ A1v1 = A2v2 .

This is known as Pascal’s Law, which states that if an incompressible fluid slows down the cross-
sectional area must increase. If the output channel is twice the area of the input channel, then
v2 = v1/2, and the extraction efficiency would be

η =
output power

input power
=

1

2
ρA2v

3

2

1

2
ρA1v

3

1

=
v2
2

v2
1

=
1

4
.

The maximum efficiency of conversion is found by determining the power extracted from the
fluid by an idealized rotor, dividing by the power in the incident fluid and maximizing this ratio
by varying a parameter describing the rotor. Begin by defining the axial interference factor, a, as
a number between 0 and 1. If a = 0 then the rotor has no effect on the wind, that is, it is not
there. If a = 1 the rotor is actually a solid wall, and when the fluid is reflected straight back no
energy is extracted. If a = 1/2 all the kinetic energy is extracted and the wind stops at the rotor,
an unphysical situation. So, a must lie somewhere between 0 and 1/2.

A simplistic view of a rotor is show in Figure 2. The fluid is assumed to experience laminar

flow, that is, a smooth flow without turbulence. The details of the rotor design will be ignored
as only the parameter a will be considered. Notice that though the intial pressure is 1 atm and
ultimately the final pressure in the wake is also 1 atm, there is pressure variation near the rotor.

The law of conservation of energy can be invoked by the application of Bernoulli’s Principle,

P +
1

2
ρv2 = constant

everywhere within the fluid, as long as no power is flowing in or out of the fluid. This equation
simply states the fact that pressure-volume work on the fluid can be converted to kinetic energy and
vice versa. Applying this equation on the left and the right sides of the rotor and then subtracting
the two equations yields a relation for △P .

P +
1

2
ρv2

f = Pr +
1

2
ρv2

r

−(P +
1

2
ρv2

w = Pr −△P +
1

2
ρv2

r )

W. M. Hetherington 2 17 May 2005



1

2
ρ(v2

f − v2

w) = △P .

free wind vf →

P = 1 atm

wake vw →

P = 1 atm

rotor

vr →

Pr Pr −△P

Figure 2: Extraction of kinetic energy from the wind using a rotor. The wake speed vw is less than
the free wind speed vf , and the speed within the rotor is between the two. There is a pressure drop
△P across the rotor.

The next step is to consider the force on the rotor from two perspectives. Since force is mo-
mentum change in the fluid per unit time,

F =
△p

△t
=

△p

V
×

V

△t
or

F = ρ(vf − vw) × πr2vr .

Here, △p is the change in momentum and the cross sectional area of the rotor of radius r is πr2.
This force must also be equal to the pressure drop across the rotor times the area, or

F = πr2
△P .

So,

ρ(vf − vw)πr2vr = πr2
△P = πr2

1

2
ρ(v2

f − v2

w) .

Thus, a simple, and somewhat obvious, expression for vr is obtained:

vr =
1

2

v2

f − v2
w

vf − vw

=
1

2

(vf + vw)(vf − vw)

vf − vw

,

or

vr =
1

2
(vf + vw) =

1

2
vf

(

1 +
vw

vf

)

= vf (1 − a) .

The interference factor a has now been defined as

a =
1

2

(

1 −
vw

vf

)

.
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Note that since
vw = 2vr − vf = 2vf (1 − a) − vf = vf (1 − 2a) ,

this definition of a agrees with the previous physical definition. If a = 1, vw = −vf and the wind
is reflected. If a = 1/2, vw = 0 which is an unphysical situation.

The power applied to the rotor is

P =
work

time
=

F△x

△t
= Fvr .

Using the earlier equation for the force on the rotor, we arrive at the important formula for the
power extracted from the moving fluid by the rotor:

P = 2πr2ρa(1 − a)v2

fvr = 2πr2ρa(1 − a)2v3

f .

Thus, the power is proportional to v3

f , the density of the fluid, the cross-sectional area of the rotor
and a function of the interference parameter.

The maximum power extracted occurs for the value of a such that

dP

da
= 0 .

Solving this equation for a yields 1/3. Thus, the most efficient rotor has a = 1/3. Using this in the
expression above for the power extracted yields

Pmax = 2πr2ρv3

f

1

3

(

2

3

)2

=
8

27
πr2ρv3

f .

Finally, the maximum efficiency is

ηmax =
Pmax

Pwind

=
8

27
πr2ρv3

f

1

2
ρπr2v3

f

=
16

27
= 0.593 .
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