Supplying All US Electrical Power Needs Using Photovoltaics

Electrical energy/year = $11.14 \text{ Q} = 3.3 \times 10^{12} \text{ kWhr.}^{-1,2}$

Average daily electrical energy = 0.9×10^{10} kWhr

Arizona yearly-average daily solar energy = 7.0 kWhr/m^2 .

PV efficiency = 10%

Electrical energy = $7.0 \text{ kWhr/m}^2 \times 0.1 = 0.7 \text{ kWhr/m}^2$

Area needed = $0.9 \times 10^{10} \text{ kWhr} / 0.7 \text{ kWhr/m}^2 = 1.3 \times 10^{10} \text{m}^2$.

 $1.3 \times 10^{10} \text{m}^2 = (1.14 \times 10^2 \text{km})^2$, or 70 mi × 70 mi

 $Cost = $500 \text{ to } $1000 / m^2$

Maximum cost = $$13 \times 10^{12}$, or \$13 trillion

Mass production \rightarrow \$1.3 trillion ³

 $20 \text{ year life} \rightarrow \$13 \times 10^{12} / 20 / 3.3 \times 10^{12} \text{kWhr} = \$0.2 / \text{kWhr}$

Current power costs \$0.06 to \$0.2 /kWhr

Corvallis receives an average of 2 kWhr/m².

 $^{^1\}mathrm{US}$ Annual Energy Outlook 2000, Energy Information Agency, Dept. of Energy.

 $^{^{2}1}Q = \times 10^{15}btu = 0.293 \times 10^{12}kWhr$

³the current tax reduction total for the next ten years