Design Specifications for the Atlantic Orient 15/50 60Hz 50kW Wind Turbine

SYSTEM

Туре Configuration Rotor Diameter Centerline Hub Height

PERFORMANCE PARAMETERS

Rated Electrical Power Wind Speed cut-in shut-down (high wind) peak (survival) Calculated Annual Output @ 100 % availability

ROTOR

Type of Hub Rotor Diameter Swept Area Number of Blades Rotor Solidity Rotor Speed @ rated wind speed Location Relative to Tower Cone Angle Tilt Angle Rotor Tip Speed Design Tip Speed

BLADE

Length Material Airfoil (type) Twist Root Chord Max Chord Tip Chord Chord Taper Ratio Overspeed Device Hub Attachment Blade Weight

GENERATOR

Туре Rated Temperature Frequency (Hz) Voltage (V) kW @ Rated Wind Speed kW @ Peak Continuous Speed RPM (nominal) Winding Configuration Insulation Enclosure Frame Size Mounting Options

TRANSMISSION

Type Housing Ratio (rotor to gen. speed) Rating, output horse power Lubrication Filtration

Heater (option)

Grid Connected Horizontal Axis 15 m (49.2 ft) 25 m (82 ft)

50 kW @11.3 m/s (25.3 mph) @hub height 25 m (82 ft) 4.6 m/s (10.2 mph) 22.4 m/s (50 mph) 59.5 m/s (133 mph)

5.4 m/s (12 mph) 87,000 kWh 6.7 m/s (15 mph) 153,000 kWh 8.0 m/s (18 mph) 215,000 kWh

Fixed Pitch 15 m (49.2 ft) 177 m²(1902 ft²) 3 0.077 65 rpm Downwind 6° 0° 51 m/s (114 mph) @ 60 Hz 6.1

7.2 m (23.7 ft) Wood/epoxy laminate NREL, Thick Series, modified 7° outer blade 457 mm (18 in) @ 4% 279 mm (11 in) 749 mm (29.5 in) @ 39% 2925 mm (115 in) 406 mm (16 in) @ 100 % 7500 mm (295 in) +2:1Electro-magnetic tip brake Embedded female bolt receptors 150 kg (330 lbs) approximate

3 phase/4 pole asynchronous -25°c 60 Hz 480, 3 phase @ 60 Hz 50 kW 66 kW 1800 @ 60 Hz Ungrounded WYE Class F Totally Enclosed Air Over (TEAO) 365 TC Direct mount to transmission Arctic low temp. shafting (-40°c)

Planetary

Ductile iron-integrated casting 1 to 28.25 (60 Hz) 88 Synthetic gear oil/non toxic Service filtration cartridge @ scheduled maintenance. Arctic version, electric

YAW SYSTEM Norr

Normal	Eroa rotatas 260 dagraas			
	Free, rotates 360 degrees			
Optional	Yaw damping-required when known conditions			
	frequently exceed 50° yaw rate per second.			
DRIVE TRAIN TOWER INTERFACE				
Structural	Yaw bearing mounted on tower top casting			
Electrical	Twist Cable			
TOWER				
Туре	Galvanized 3 legged, bolted lattice, self-supporting			
Tower Height	24.4 m (80 ft)			
Options	18.3 m (60 ft), 30.5 m (100 ft), 36.6 m (120 ft)			
•	Tilt down 24.4 m (80 ft)			
FOUNDATION				
Туре	Concrete or special			
Anchor Bolts	Certified ASTMA-A-193-Grade B7			
CONTROL SYSTEM	М			
Туре	PLC based			
Control Inputs	Wind speed, generator shaft speed			
Control Outputs	Line interconnection, brake deployment			
<u>*</u> .				

Cont Communications Serial link to central computer for energy monitor and maintenance dispatch (optional Enclosures NEMA 1, NEMA 4 (optional) Soft Start Optional

ROTOR SPEED CONTROL

Production	Blade stall increases with increased wind velocity	
Normal Start up	Aerodynamic, electrical boost if necessary	
Shut-down	Control system simultaneously applies dynamic brake and	
	deploys tip brakes. Parking brake brings rotor to standstill.	
Back-up Overspeed Control: Centrifugally activated tip brakes deploy		

BRAKE SYSTEM CONTROL

Fail-safe brakes automatically deploy when grid failure occurs.

APPROXIMATE SYSTEM DESIGN WEIGHTS

Tower	3,210 kgs	(7,080 lbs)
Rotor & Drivetrain	2,420 kgs	(5,340 lbs)
Weight on Foundation	5,630 kgs	(12,420 lbs)

DESIGN LIFE: 30 Years

DESIGN STANDARDS: Applicable Standards, AWEA, EIA and IEC **DOCUMENTATION:**

Installation Guide and Operation & Maintenance Manual **SCHEDULED MAINTENANCE:** Semi-annual or after severe events.

NOTE 1:Atlantic Orient Corporation and its affiliates are constantly working to improve their products, therefore, product specifications are subject to change without notice.

NOTE 2: Power curves show typical power available at the controller based on a combination of measured and calculated data. Annual energy is calculated using power curves and a Rayleigh wind speed distribution. Energy production may be greater or lesser dependent upon actual wind resources and site conditions, and will vary with wind turbine maintenance, altitude, temperature, topography and the proximity to other structures including wind turbines.

NOTE 3: For design options to accommodate severe climates or unusual circumstances please contact the corporate office in Norwich, Vermont USA

NOTE 4: For integration into high penetration wind-diesel systems and village electrification schemes contact the corporate office in Norwich, VT USA for technical support and systems design.