Phase of A for:
Divider ($C, R\|C+R\| C+R\|C+R\| R$)Divider ($C, R\|C+R\| C+R \| R)$ Divider ($C, R\|C+R\| R$)
Divider($C, R \| R$)Inv Amplifier

 $\operatorname{div}\{C=(0.0,7 e-08,0.0), \operatorname{par}[R=(10000.0,0.0,0.0) ; \operatorname{ser}(\mathrm{C}=(0.0,7 \mathrm{e}-08,0.0) ; \operatorname{par}[\mathrm{R}=(10000.0,0.0,0.0) ; \operatorname{ser}(\mathrm{C}=(0.0,7 \mathrm{e}-08,0.0) ; \operatorname{par}[\mathrm{R}=(10000.0,0.0,0.0) ; \mathrm{R}=(10000.0,0.0,0.0)])])]\} \operatorname{and}$
$\operatorname{div}\{C=(0.0,7 e-08,0.0), \operatorname{par}[\mathrm{R}=(10000.0,0.0,0.0) ; \operatorname{ser}(\mathrm{C}=(0.0,7 \mathrm{e}-08,0.0) ; \operatorname{par}[\mathrm{R}=(10000.0,0.0,0.0) ; \mathrm{R}=(10000.0,0.0,0.0)])]\}$ and
$\operatorname{div}\{\mathrm{C}=(0.0,7 \mathrm{e}-08,0.0), \operatorname{par}[\mathrm{R}=(10000.0,0.0,0.0) ; \mathrm{R}=(10000.0,0.0,0.0)]\}$ and lnv Amplifier=(Op Amp,
$\operatorname{div}\{R=(240000.0,0.0,0.0), R=(10000.0,0.0,0.0)\})$

