Diode and Transistor Impedance

Definition of Impedance

The impedance $Z(\omega)$ is defined only in the frequency domain. For the simple case of a single frequency signal, with $V(t) = V(\omega)e^{i\omega t}$ and $I(t) = I(\omega)e^{i\omega t}$, the impedance of an object is defined as

$$Z(\omega) = rac{V(\omega)}{I(\omega)} \; .$$

Capacitor Impedance

The current $I(t) = I(\omega)e^{i\omega t}$ is related to the charge $Q(t) = Q(\omega)e^{i\omega t}$ through

$$I(t) = \frac{d}{dt}Q(t) = i\omega Q(t) \; .$$

where $I(\omega)$ and $Q(\omega)$ are complex. Since $V(t) = V(\omega)e^{i\omega t} = Q(t)/C$, the impedance is

$$Z(\omega) = \frac{Q(\omega)/C}{i\omega Q(\omega)} = \frac{1}{i\omega C}$$

Inductor Impedance

The potential $V(t) = V(\omega)e^{i\omega t}$ is related to the current $I(t) = I(\omega)e^{i\omega t}$ through

$$V(t) = L \frac{d}{dt} I(t) = i\omega L I(t) ,$$

where $V(\omega)$ and $I(\omega)$ are complex. The impedance is

$$Z(\omega) = i\omega L \; .$$

Diode and Transistor Impedance

The current through the diode is $I(t) = I_{\circ}(e^{\alpha V(t)} - 1)$, with with $\alpha = e/kT$ and V(t) and I(t) being positive when in the directions shown in the figure.

Figure 1: The diode and definitions of the current through and potential across.

It is possible to define a small signal impedance $Z(\omega)$ for a diode with no capacitance when $V(t) = V_{\circ} + v(\omega)e^{i\omega t}$ and $v(\omega) \ll V_{\circ}$. Begin by noting that

$$I(t) \simeq I_{\circ}(e^{\alpha V_{\circ}} - 1) + \frac{d}{dV}I(V)\Big|_{V=V_{\circ}}v(\omega)e^{i\omega t} .$$

Then, since

$$\frac{d}{dV}I(V)\Big|_{V=V_{\circ}} = I_{\circ}\alpha e^{\alpha V_{\circ}} ,$$

The impedance is just

$$Z(\omega) = \frac{e^{-\alpha V_{\circ}}}{I_{\circ}\alpha} \; .$$

This is dimensionally correct as the dimensionality of α is potential⁻¹ and the unit is Volt⁻¹. Notice that Z is a real resistive impedance and not a function of ω as no dynamic behavior of the diode has been considered. If the capacitance is known for $V = V_{\circ}$, then the total impedance is the parallel combination of the impedance above and the capacitive impedance.