Diode and Transistor Impedance

Definition of Impedance

The impedance $Z(\omega)$ is defined only in the frequency domain. For the simple case of a single frequency signal, with $V(t)=V(\omega) e^{i \omega t}$ and $I(t)=I(\omega) e^{i \omega t}$, the impedance of an object is defined as

$$
Z(\omega)=\frac{V(\omega)}{I(\omega)}
$$

Capacitor Impedance

The current $I(t)=I(\omega) e^{i \omega t}$ is related to the charge $Q(t)=Q(\omega) e^{i \omega t}$ through

$$
I(t)=\frac{d}{d t} Q(t)=i \omega Q(t)
$$

where $I(\omega)$ and $Q(\omega)$ are complex. Since $V(t)=V(\omega) e^{i \omega t}=Q(t) / C$, the impedance is

$$
Z(\omega)=\frac{Q(\omega) / C}{i \omega Q(\omega)}=\frac{1}{i \omega C}
$$

Inductor Impedance

The potential $V(t)=V(\omega) e^{i \omega t}$ is related to the current $I(t)=I(\omega) e^{i \omega t}$ through

$$
V(t)=L \frac{d}{d t} I(t)=i \omega L I(t)
$$

where $V(\omega)$ and $I(\omega)$ are complex. The impedance is

$$
Z(\omega)=i \omega L
$$

Diode and Transistor Impedance

The current through the diode is $I(t)=I_{\circ}\left(e^{\alpha V(t)}-1\right)$, with with $\alpha=e / \mathrm{k} T$ and $V(t)$ and $I(t)$ being positive when in the directions shown in the figure.

Figure 1: The diode and definitions of the current through and potential across.

It is possible to define a small signal impedance $Z(\omega)$ for a diode with no capacitance when $V(t)=$ $V_{\circ}+v(\omega) e^{i \omega t}$ and $v(\omega) \ll V_{0}$. Begin by noting that

$$
I(t) \approx I_{\circ}\left(e^{\alpha V \circ}-1\right)+\left.\frac{d}{d V} I(V)\right|_{V=V_{0}} v(\omega) e^{i \omega t}
$$

Then, since

$$
\left.\frac{d}{d V} I(V)\right|_{V=V_{0}}=I_{\circ} \alpha e^{\alpha V_{\circ}},
$$

The impedance is just

$$
Z(\omega)=\frac{e^{-\alpha V_{\circ}}}{I_{\circ} \alpha} .
$$

This is dimensionally correct as the dimensionality of α is potential ${ }^{-1}$ and the unit is Volt ${ }^{-1}$. Notice that Z is a real resistive impedance and not a function of ω as no dynamic behavior of the diode has been considered. If the capacitance is known for $V=V_{0}$, then the total impedance is the parallel combination of the impedance above and the capacitive impedance.

