
RLC Circuits and Resonance

Concept

The combination of a capacitor, which stores energy in the electric field, and an inductor, which
stores energy in the magnetic field, allows the possibility for one form of energy to be converted
to the other and then back again. Thus, oscillation, or resonance behavior, is expected. A time
domain analysis of a simple parallel combination of an inductor and a capacitor, referred to as
the L||C circuit, yields the resonance frequency. A frequency domain analysis using the imaginary
impedances of the objects yields the bandpass filter transmission function. Similarly, an analysis
of the series combination of an inductor and a capacitor, referred to as the L+C circuit, yields
the notch filter transmission function. When real resistive losses are introduced in both filters,
the concept of the quality factor Q results in an explanation of the width of these transmission
functions.

Time-Domain Analysis of the L||C Circuit

Consider a L||C circuit with switches positioned such that the capacitor can first be charged with
a battery and then discharged through the inductor once the battery has been disconnected. This
situation is analogous to raising a pendulum and then releasing it, a situation in which the initial
condition is that of maximum gravitational potential energy. The waveform in the picture decays
with time, a situation requiring power dissipation due to nonzero resistance in the inductor.

LCV◦

V◦e
−t/τ cos(ωt)

Analysis Assuming an Ideal Inductor

The behavior can be analyzed in the time-domain by solving an appropriate differential equation
with the appropriate boundary conditions. In this case, the boundary condition is that at time
t = 0 the charge on the capacitor is Q◦ = V◦C. Begin with Kirchoff’s Potential Law, which is a
consequence of conservation of energy,

VC(t) + VL(t) = 0 → Q(t)

C
= −L

d2Q

dt2
→ d2Q

dt2
= −Q(t)

LC
.

Thus,

Q(t) = Q◦e
iω◦t → ω◦ =

1√
LC

.

Note the phase difference between the current and the charge,

I(t) =
dQ(t)

dt
= iω◦Q(t) = ω◦Q(t)eiπ/2 .
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When a real resistance r of the inductor is included, Q(t) will exhibit an exponential decay as well
as oscillation, as pictured above.

Another initial or boundary condition is that of a nonzero current in the inductor at t = 0.
In the picture, the impulse is meant to represent a current in the inductor. This is analogous to
hitting a pendulum at rest or ringing a bell.

LC

Unit Current Impulse
V (t) = V◦e

−t/τ sin(ωt)

The solution for this initial condition is

I(t) = I◦e
iω◦t and Q(t) =

I◦
ω◦

ei(ω◦t−π/2) .

Analysis Assuming a Real Inductor

A real inductor exhibits a real resistance r in series with the inductance, so the governing equation
becomes

VC(t) + VL(t) + Vr(t) = 0 → Q(t)

C
+ L

d2Q

dt2
+ r

dQ

dt
= 0 .

Assuming a solution of the form

Q(t) = Q◦e
iωte−t/τ = Q◦e

i(ω+i/τ)t = Q◦e
i(ω+iΓ)t ,

the equation becomes

1

C
− (ω + iΓ)2L + i(ω + iΓ)r = 0 → 1

C
− (ω2 + 2iωΓ − Γ2)L + i(ω + iΓ)r = 0 .

At this point, there are two unknowns, ω and Γ, and two equations, the real and the imaginary
parts of the above expression. For the imaginary part,

iωr − 2iωΓL = 0 → Γ =
r

2L
.

For the real part,

−ω2L + Γ2L − Γr +
1

C
= 0 ,

so

ω2 = Γ2 − Γr

L
+

1

LC
→ ω2 =

r2

4L2
− r2

2L2
+

1

LC
→ ω2 =

1

LC
− r2

4L2
= ω2

◦ −
r2

4L2
= ω2

◦ − Γ2 .

These two results,

Γ =
r

2L
and ω2 = ω2

◦ − Γ2 ,

yield the solution

Q(t) = Q◦e
i(
√

ω2
◦
−Γ2+iΓ)t .

Notice that the frequency of oscillation is now less than that of the ideal oscillator and that the
damping or characteristic decay time of the amplitude of oscillation is τ = 1/Γ.
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Frequency Domain Analysis of the Parallel LC Circuit

The fact that an L||C circuit exhibits a natural resonance frequency suggests that its response to
a sinusoidal driving signal will depend upon the frequency of that signal. The response should be
greatest when the applied frequency is ω◦. In this case, response means amplitude of the charge on
the capacitor or rate of change of current through the inductor, and a large response means that a
large signal will be observed.

L VL

R

VR

CV◦

Another view is to use what is referred to as physical reasoning based on the known impedances
of the inductor and capacitor. At low frequencies, the inductor is a short circuit, so the output
should be about zero. At high frequencies, the capacitor is a short circuit, so the output is again
zero. At intermediate frequencies, both the capacitor and inductor have finite, albeit imaginary,
impedances, so some finite potential will be measured. A comparison of this view to the previous
view suggests that the impedance of the L||C structure is greatest at ω◦.

Case of an Ideal Inductor

Using the device impedances, the total impedance of any portion of a circuit can be easily calculated
without having to work with a differential equation. All that is needed is the application of Ohm’s
Law and Kirchoff’s Voltage and Current Laws to the circuit. When the input signal Vs(t) = V◦e

iωt

is applied to the circuit, the potential across the L||C combination is

V (t) =
ZC||L

R + ZC||L
Vs(t) or V (ω)eiωt =

ZC||L

R + ZC||L
Vs(ω)eiωt ,

where Vs(ω) is real and Vs(ω) is complex and

1

ZC||L
=

1

ZC
+

1

ZL
or ZC||L =

ZCZL

ZC + ZL
.

We find that, for an ideal capacitor and inductor,

ZC||L =
iωL

iωC( 1
iωC + iωL)

=
iωL

1 − ω2LC
.

Notice that when

ω =
1√
LC

a resonant condition is obtained with ZC||L → i∞. Of course, this is only valid for an ideal inductor.
A real resistance r for the inductor will change this result. For an arbitrary frequency ω,

V (ω) =
iωL

(1 − ω2CL)(R + iωL
1−ω2CL

)
Vs(ω) =

iωL

R(1 − ω2CL) + iωL
Vs(ω) .
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This can be rewritten to clearly show the real and imaginary parts by multiply both the numerator
and denominator by the complex conjugate of the denomenator

V (ω) =
iωL(R(1 − ω2CL) − iωL)

R2(1 − ω2CL)2 + ω2L2
Vs(ω) =

ω2L2 + iωLR(1 − ω2CL)

R2(1 − ω2CL)2 + ω2L2
Vs(ω) .

The amplitude and phase of the transmission function A(ω) is

A(ω) =
V (ω)

Vs(ω)
=

ω2L2 + iωLR(1 − ω2CL)

R2(1 − ω2CL)2 + ω2L2
=

√

ω4L4 + (ωLR(1 − ω2CL))2

R2(1 − ω2CL)2 + ω2L2
eiβ ,

where the phase is

β = tan−1 ωLR(1 − ω2CL)

ω2L2
= tan−1 R

ωL
(1 − ω2/ω2

◦) .

These expression becomes more complicated when ZL = iωL + r is used for the impedance of the
inductor. Notice that the |A(ω◦)| = 1 and that |A(ω)| → 0 as ω → 0 or ∞. The amplitude and
phase of A(ω) are plotted below for the case R = 1000Ω, L = 200µH, r = 0 and C = 1.4µF .

Transmission Amplitude of RLC Bandpass Filter
 L = 200uH  r = 0  C = 1.4uF  R = 1K
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Case of a Real Inductor

It is perhaps most useful to begin with an analysis of the impedance of the L||C structure,

ZL||C =
ZLZC

ZL + ZC
.

For the ideal case,

ZL||C =
iωL/iωC

iωL + 1/iωC
=

iωL

1 − ω2LC
=

iωL

1 − ω2/ω2
◦

.

As ω → 0, ZL||C → iωL. The phase is α = π/2 for all ω < ω◦. As ω → ∞, ZL||C → −i/ωC, and
α = −π/2 for all ω > ω◦. And when ω = ω◦, |ZL||C | = ∞ and the phase is undefined.

For the case of a real inductor ZL = iωL + r and

ZL||C =
(iωL + r)/iωC

iωL + r + 1/iωC
=

r + iωL

1 − ω2/ω2
◦ + iωrC

= z(ω)eiα(ω) ,
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where

z(ω) =

√
r2 + ω2L2

√

(1 − ω2/ω2
◦)

2 + ω2r2c2
and α(ω) = tan−1 ωL

r
− tan−1 ωrC

1 − ω2/ω2
◦

.

The maximum value of z(ω) occurs at ω◦,

z(ω◦) =

√

r2 + L/C

ω◦rC
=

√

L

C
+

L2

r2C2
,

and the phase is

α(ω◦) = tan−1 ω◦L

r
− π

2
.

Notice that α(ω◦) → 0 as r → 0. As ω → 0, z(ω) → r and α → 0, not π/2 as in the ideal case. As
ω → ∞, z(ω) → 1/ωC and α → π/2.

The transmission function for the L||C circuit is

A(ω) =
z(ω)eiα(ω)

R + z(ω)eiα(ω)
=

z(ω)eiα(ω)

R + z(ω) cos α + iz(ω) sin α
=

z(ω)eiα(ω)

√

R2 + 2Rz(ω) cos α + z2(ω) eiβ
,

where

β(ω) = tan−1 z(ω) sin α

R + z(ω) cos α
.

So,

A(ω) =
z(ω)

√

R2 + 2Rz(ω) cos α + z2(ω)
ei(α−β) .

The amplitude and phase of A(ω) are plotted below for the case R = 1000Ω, L = 200µH, r = 2Ω
and C = 1.4µF .

Transmission Amplitude of RLC Bandpass Filter
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Notice that as ω → 0, A → r/(R + r), that is the curve is flat as shown above. Also, as ω → 0, the
phase → 0 since the phase is 0 for a simple resistive potential divider.

Frequency Domain Analysis of the Series LC Circuit

The same oscillatory behavior occurs in the L+C circuit, as the charge on the capacitor and the
current in the inductor alternate. One way to think about this is to consider what happens to the
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power that you apply to the L+C structure. At ω◦, the oscillator will absorb all the power since
that is the frequency at which it is most responsive. Thus, the power transmitted through the
circuit is small.

L VL

VC

R

VR

C

V◦

The other view is to realize that the impedance of the L+C structure ZL+C = i(ωL−1/ωC) →
∞ as ω → 0 or ∞ and the input signal is completely transmitted, or |A| = 1. At intermediate
frequencies, ZL+C is finite, so |A| < 1. A comparison of this view to the previous view suggests
that the impedance of the L+C structure is least at ω◦.

Case of an Ideal Inductor

A thorough analysis begins with

V (t) =
ZC+L

R + ZC+L
Vs(t) , where ZL+C = i(ωL − 1/ωC) = iωL(1 − ω2

◦

ω2
) .

Notice that ZL+C(ω◦) = 0, as rationalized previously. Then,

A(ω) =
ZC+L

R + ZC+L
=

iωL(1 − ω2
◦

ω2 )

R + iωL(1 − ω2
◦

ω2 )
.

Thus,

A(ω) =
ωL(1 − ω2

◦

ω2 )
√

R2 + (ωL(1 − ω2
◦

ω2 ))2

eiπ/2

ei tan−1
ωL(1−

ω2
◦

ω2 )

R

A(ω) =
ωL(1 − ω2

◦

ω2 )
√

R2 + (ωL(1 − ω2
◦

ω2 ))2
ei(π/2−tan−1

ωL(1−
ω
2
◦

ω2 )

R
) .

So |A| → 1 as ω → 0 or ∞. This is the behavior of a notch filter, meaning that it greatly attenuates
one particular frequency. This expression for A(ω) is more complicated but more realistic when a
inductor resistance r is included. The amplitude and phase of A(ω) are plotted below for the case
R = 1000Ω, L = 200µH, r = 0 and C = 1.4µF .
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Transmission Amplitude of RLC Notch Filter
 L = 200uH  r = 0  C = 1.4uF  R = 1K
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Transmission Phase of RLC Notch Filter
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Case of a Real Inductor

The complex impedance of the L+C structure is

ZL+C(ω) = iωL + r +
1

iωC
= r + i(ωL − 1

ωC
) = r + iωL

(

1 − ω2
◦

ω2

)

.

In the limit ω → 0, ZL+C → −i/ωC → ∞, and the phase → −π/2. In the limit ω → ∞,
ZL+C → iωL → ∞, and the phase → π/2. At ω = ω◦, ZL+C = r, and the phase = 0.

The transmission function of the RLC circuit is

A(ω) =
ZL+C

R + ZL+C
=

r + iωL
(

1 − ω2
◦

ω2

)

R + r + iωL
(

1 − ω2
◦

ω2

)

,

A(ω) =

√

r2 + ω2L2
(

1 − ω2
◦

ω2

)2
eiα

√

(R + r)2 + ω2L2
(

1 − ω2
◦

ω2

)2
eiβ

,

with

α = tan−1 ωL

r

(

1 − ω2
◦

ω2

)

and β = tan−1 ωL

R + r
(1 − ω2

◦

ω2
) .

The total phase is α − β. As ω → 0, this phase → 0. As ω → ∞, the phase also → 0. At ω = ω◦,
the phase = 0. The amplitude and phase of A(ω) are plotted below for the case R = 1000Ω,
L = 200µH, r = 2Ω and C = 1.4µF .

Transmission Amplitude of RLC Notch Filter
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Transmission Phase of RLC Notch Filter
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