Please email this to me by no late than Saturday at midnight (atkinsm@onid.orst.edu)

## 1 NOT Gates

Investigate switching potentials, what does the gate count as a logical 1? A logical 0 ?
Investigate what happens when you link several NOT gates together in a chain? In a loop? How does this change if you have an even or odd number of gates?

## 2 NAND Gates

Test the truth table by applying a square wave at one input and holding the other input at a logical 0 , and then a logical 1 . Then apply a ramp wave to both inputs and see what happens.

For the following set up, what is the maximum $I_{\text {out }}$ for which $V_{\text {out }}$ is still a high?


Figure 1: NAND gate with both inputs and output grounded

For the following set up, what is maximum $I_{s}$ such that $V_{o u t}$ is still low?


Figure 2: NAND gate with $+5 V$ applied at each end of the circuit

For the following set up, what is the minimum $I_{i n}$ such that $V_{A}$ stays high?


Figure 3: NAND gate with $R$ before $A$

What happens when you leave an input to a NAND gate floating (not connected to anything) while the other is held high/low? Using the truth table, what would you say the gate interprets a floating input as?

Create an XOR gate out of NAND gates.

