INVENTORY OF ACHIEVEMENT

PARADIGMS IN PHYSICS: ROTATIONAL MOTION

by Philip J. Siemens

Achievement:	Partial	Full
1. Formulate hypotheses		CX2 CX3
2. Deduce consequences of an hypothesis		CX2 CX3
3. Confront expectations with observations for the inertial moments of a rotor	CX1	W3 W6
		CX3
4. Confront expectations with observations for the principal axes of a rotor		CX2
5. Confront expectations with observations of gravity driven precession		CX3
6. Compute inertial tensors of rotors observed in the laboratory		W1 W2
7. Analyze inertial tensors for their principal moments and principal axes	W1	W6
8. Compute rotation tensors describing changes of coordinate systems		W4 W5
9. Record, explain and interpret theoretical considerations and computations	W3	W4 W6
10. Record and explain clearly experimental procedures carried out		CX1 CX2
11. Attempt semi-quantitative error analysis in assessing the significance of observations	W1	CX1 CX3
12. Find or use a basis transformation representing a rotation of quantum states		X2