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x2 d2

dx2
Jm(x) + x

d

dx
Jm(x) + (x2 −m2)Jm(x) = 0

This is Bessel’s equation. Usually x = kρ, where ρ is the radial variable in
cylindrical coordinates. Jm is called the “Bessel function of the first kind.”
The Neumann function Nm, or “Bessel function of the second kind,” is also
a solution to the same equation. Both also satisfy the general orthogonality
and orthonormality relations,

(k2 − l2)
∫ b

a
xJm(kx)Jm(lx)dx =

[
(lJ̇m(lx)Jm(kx)− kJ̇m(kx)Jm(lx))x

]b

a

∫ b

a
xJ2

m(kx)xdx =

[
1
2
(x2 − m2

k2
)J2

m(kx) +
x2

2
J̇2

m(kx)

]b

a

These equations are too general for most applications. In this class we will
usually use the Besel functions to expand a potential in some cylindrical
region 0 ≤ ρ ≤ a. In this case we simplify with the following replacements:

• Abandon Nm. These functions diverge at the origin.

• Repace a→ 0 and b→ a.

• Define kmn = xmn/a, where xmn is the nth zero of Jm, i.e.

Jm(xmn) = 0.

They then take the form∫ a

0
Jm(kmnρ)Jm(kmn′ρ)ρdρ =

a2

2
J2

m±1(xmn)δnn′
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Any function that is not too badly behaved in this region can be expanded
in the so-called Fourier-Bessel series.

R(ρ) =
∞∑

n=1

AmnJm(kmnρ)

In many respects this is like the Fourier sine series,

R(ρ) =
∞∑

n=1

An sin
(

nπ

a
ρ

)

which you can think of as a sum over the “zeros of the sine function,” nπ/a.
The major difference is that any function R(ρ) can be expanded using Bessel
functions in an infinite number of different ways, one for each value of m.
By inverting this series we get a completness relation.

δ(ρ− ρ′)
ρ

=
∞∑

n=1

2Jm(kmnρ)Jm(kmnρ′)
a2J2

m±1(xmn)

The Fourier sine series can be generalized so that it applies to an infinite
interval. In this case the sums are replaced by integrals. The analogous
formulas for Bessel functions are:

δ(x− x′)
x

=
∫ ∞

0
k dk Jm(kx)Jm(kx′)

δ(k − k′)
k

=
∫ ∞

0
x dx Jm(kx)Jm(k′x)

In addition to Jm and Nm there are other, complex solutions to Bessel’s
equation:

H(1)
m = Jm(x) + iNm(x)

H(2)
m = Jm(x)− iNm(x)

These are called Hankel functions, or “Bessel functions of the third kind.”
Just as Jm and Nm are analogous to sines and cosines, H

(1)
m and H

(2)
m are

analogous to exponentials of the form e±i(x−δ)/
√

x. We will have no use for
these, since our potentials are always real functions.

Sometimes one needs solutions to the “modified Bessel equation,”

x2 d2

dx2
Rm(x) + x

d

dx
Rm(x)− (x2 + m2)Rm(x) = 0
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Function Trig Function Behavior

Jm, Nm sin(x), cos(x) Real Oscillatory

H
(1)
m , H

(2)
m e±ix Complex, oscillatory

Im ex Regular at 0, singular at ∞.

Km e−x Singular at 0, regular at ∞.

Table 1: Bessel functions and their behavior together with the corresponding
trigonometric functions.

This is equivalent to Bessel’s equation with x replaced by ix. Accordingly
we define

Im(x) =
Jm(ix)

im

Km(x) =
π(i)m+1

2
[Jm(ix) + iNm(ix)]

For large x then

Im →
1√
x

ex

Km →
1√
x

e−x

Since these functions do not oscillate they have no simple orthogonality
relation. These properties are summarized in Table 1.

When we separate variables in cylindrical coordinates, we are always
faced with a choice for the sign of the separation constant k2.

Z̈ = ±k2Z

ρ2R̈ + ρṘ + (±k2ρ2 −m2)R = 0

Either one takes in upper sign, in which case Z is exponential and R os-
cillates, or one takes the lower sign in which case Z oscillates and R is
exponential.

The following recursion relations are often useful:

Jm−1(x) + Jm+1(x) =
2m

x
Jm(x)

Jm−1(x)− Jm+1(x) = 2
d

dx
Jm(x)
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The functions Jm, Nm, H
(1)
m , and H

(2)
m all satisfy the formulas above. The

Modified Bessel function Im and Km satisfy the following:

Im−1(x)− Im+1(x) = −2m

x
Im(x)

Im−1(x) + Im+1(x) = 2
d

dx
Im(x)

Km−1(x)−Km+1(x) = −2m

x
Km(x)

Km−1(x) + Km+1(x) = −2
d

dx
Km(x)
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