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Summary
A method of measuring specific resistivity and Hall effect of flat
samples of arbitrary shape is presented. The method is based upon a
theorem which holds for a flat sample of arbitrary shape if the contacts
. are sufficiently small and located at the circumference of the sample.
o . ' Furthermore, the sample must be singly connected, i.e., it should not
OTHER PHILIPS PUBLI CATIONS have isolated holes.
Résumé
On présente une méthode pour mesurer la résistance spécifique et
I’effet Hall d’un échantillon plat de forme quelconque. La méthode est
fondée sur un théoréme qui est appliquable si I’échantillon est plan-
paralléle, si les contacts sont suffisamment petits et se trouvent a la
périphérie de ’échantillon. Enfin I’échantillon doit étre simplement
connexe, c-a-d. sans trous isolés.

PHILIPS TECHNICAL REVIEW

A montly publication dealing with technical problems relating t
the wwomsoﬁ.mq processes, and investigations of the Philips Industries
About 32 pa : oo Zusammenfassung
pages per Issue. Es wird eine Methode zur Messung des spezifischen Widerstandes und
» Sp

des Halleffektes einer planparallelen Probe willkiirlicher Form an-
gegeben. Die Methode griindet sich auf eine These, die anwendbar
ist wenn die Kontakte geniigend klein sind und sich am Rande der
Probe befinden. SchlieBlich soll die Probe einfach zusammenh#ingend
sein, d.h. sie darf keine Lécher haben.

ELECTRONIC APPLICATIONS

A quarterly publication containing articles on electronics.

About 50 pages per issue. . N 1. Introduction
In many cases the specific resistivity and the Hall effect of a conducting
- material are measured by cutting a sample in the form of a bar. Current
‘contacts A and B and voltage contacts C, D, E and F are attached to the

_bar as shown in fig. 1. The specific resistivity is then derived from the
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Fig. 1. The classical shape of a sample for measuring the specific resistivity and the Hall effect,
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V¢ between the contacts D and C per unit current through the contacts
'B. The current enters the sample through the contact A and leaves it
gh the contact B. Similarly we define the resistance Ry py. It will be
wn that the following relation holds:

exp (— 2R, cp d/o) + exp (— §~wwob> dfo) =1, 1)

re o is the specific resistance of the material and d is the thickness of the

potential drop between the.points C and D or E and F and from the dime
sions of the sample. On the other hand, the Hall voltage can be measure :
between the points C and E or D and F. The current contacts must be fa
away from the points C, D, E and Fin order to ensure that the lines of flow ar
sufficiently parallel and are not changed on application of a magnetic fiel

For the measurement of the specific resistivity and Hall effect of sem
conductors a more ooﬁ%fomﬁo@ shape of the sample has often to be used
A well-known example is the bridge-shaped sample shown in fig. 2. Th

ol

Fig. 2. The bridge-shaped m.EBEm, furnished with large areas for making low-ohmic contact

o prove eq. (1) we shall first show that it holds for a particular shape
the sample. The second step is to prove that if it holds for a particular
pe it will hold for any shape. For our particular shape we choose a semi-
nite plane with contacts P, Q, R and S along its boundary, spaced at
tances a, b and c¢ respectively (see fig. 4). A current j enters the sample
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. A sample in the form of a semi-infinite plane with four contacts along its boundary
which eq. (1) is proved first.

large areas at the ends have the task to provide low-ohmic contacts. Further

more, when making these contacts a heat treatment is often necessary

which in this case can be done without heating that part of the sampl

which is under measurement.
It will be shown that the specific resistivity and the Hall effect of a fla

sample of arbitrary shape can be measured without knowing the curren

pattern if the following conditions are fulfilled:

(a) The contacts are at the circumference of the sample.

(b) The contacts are sufficiently small.

(c¢) The sample is homogeneous in thickness.

(d) The surface of the sample is singly connected, i.e., the sample does no

have isolated holes.

93599

the contact P mbm leaves it at the contact Q. From elementary theory it
ows that

_Je €+$€+&
ﬁ\mlﬂ\wlq«l&rw;ia:T.vnch )

. m@th 0 +e) -
Rogas = G g ®)
2. A theorem which holds for a flat sample of arbitrary shape

We consider a flat meEm of a conducting material of arbitrary shape
with successive contacts A, B, C and D fixed on arbitrary places along the
circumference such that the above-mentioned conditions (a) to (d) are ful-

filled (see fig. 3). We define the resistance R,y cp as the potential difference

(@ b) (b )
mﬁ%ﬂ%?ﬁ,ﬁw.

®3)

D b@+b+c)+ca=(a+b)(b+c). )
c m the egs (2), (3) and (4) eq. (1) follows immediately.
. ing the same arguments it can also be shown that
- | Nwmo‘wm = Qgs,po> . Amv
A 93598 Rorsp = Rsp,or » o (6)
Fig. 3. A sample of arbitrary shape with four small contacts at arbitrary places along the mwwwbm — »mw@w.ww , . AQ v

circumference which, according to this paper, can be used to measure the specific resistivity

and the Hall effect. .mmooimmw .+. .NNOWMM IT .mww.om =0. ) . Amv
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- a small half-circle in the upper half-plane the value of v will increase
/d. Similarly when passing the point Q the value of v will decrease by
‘We consider now a sample of arbitrary shape, lying in a different
lex plane which we shall call the t-plane (see fig. 6), where t = r + is.

The last four relations, however, are of a much more mobﬁ.& nature than
and follow also from the reciprocity theorem of passive multipoles.

We shall now proceed with the second step and show that eq. (1) hol
quite generally. To that end we make use of the well-known technique o
conformal mapping of two-dimensional fields *). We assume that the semi:
infinite sample considered above coincides with the upper part of the co
plex z-plane, where z = x | iy.

We introduce a function w = f(z) = u(x,y) + + tv(x,y), where u and Y
are both real functions of x and y. The function f (%) is chosen in such a way,
that u represents the potential field in the sample. The functions u and #

satisfy the Cauchy-Riemann relations:

C

t-plane

ou ov

ox oy

ou ov
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If we now travel from an arbitrary point T, in the upper half-plane to

another point T, in the upper half-plane (see fig. 5), the net current whic Fig. 6. A samp le of arbitrary shape, lying in the complex f-plane.

ww a well-known theorem, it is always possible to find an analytic

2
f/4/ ] Z-plane nction #(z) such that the upper half-plane in the z-plane is mapped onto
- e sample in the t-plane. There are some restrictions as to the shape of
e sample in the t-plane which are, however, not of physical interest. In
. N rticular, let A, B, C and D in the i-plane be the images of the points P, Q,
N/ R s and S respectively in the z-plane. Furthermore, let k(t) = I 4 im be

ntical with f(z) = f(z(t)) = k(z). Hence by definition m remains con-
nt when travelling in counter-clockwise direction along the boundary of
e sample in the ¢-plane; it only increases by gj/d when passing the point
and it decreases by the same amount when passing the point B.

From the theory of conformal mapping it follows that if m in the t-plane
interpreted in the same way as v in the z-plane, then I will represent the
tential field in the t-plane. Consequently if a current j’ enters the sample
the contact A and leaves it at the contact B and if we choose jlo'ld =
d, S_pmwm,m\ and d’ are the specific resistivity and the thickness of the
mple in the t-plane, then the voltage difference V;,—V will be equal to
‘voltage difference ¥s— V. Hence (d/p) R,pcp is invariant under con-

\‘\n \e R S
h . 93600

Fig. 5. The same sample as in fig. 4, coinciding with the upper part of the complex z-plan

traverses our path from right to left is given by
Ty

) d
.N.H.NQHH == — .mz‘ Q.Mu

e

- where Ej, is the normal component of the field strength. This expression i
readily verified to be equal to

.

T, . T,
Jrar, = W Alolz dx -+ @lsmv\v —_ W \‘ A dx - |mu\v d Aea _ eav mal transformation. The same is true for (d/p) wwnuw. From this it
e i oy ox e \ox oy e\ * ows that eq. (1) is of general validity.

Hence if we travel along the real axis from —oo to + oo the value of

. . . . . uunmaﬂow— a romﬂcﬁm
remains constant until we pass the point P. When passing the point PP

From the above section it follows that for measuring the specific resistivi-

of a flat sample it suffices to make four small contacts along its circum-
6

*) L. V. Bewley, Two-dimensional fields in electrical engineering, The MacMillan Com:
pany, New York, 1948,



6 L. J. van der PAUW: MEASURING OF SPECIFIC RESISTIVITY AND HALL EFFECT 7
ference mhm. to measure the two resistances R,y o, and Rpcp, (see fig. divj=0, (14)
and the thickness of the sample. Equation (1) determines uniquely thg

value of ¢ as a function of R,y cp, Rpcps and d. In order to facilitate curl j = 0, (15)

solution of ¢ from eq. (1) we write it in the form

ere j represents the current density, remain valid. Furthermore if the
itacts are sufficiently small and at the circumference of the sample the
ter lines of flow, which must follow the circumference of the sample, fully
termine our boundary conditions. Hence the lines of flow do not change
en a magnetic field is applied. However, the effect of the magnetic field
the electric potential is such that between two arbitrary’ points an
ditional potential difference AV is built up which is equal to

0= mmm«l (Ragcp + Wwobb Rug.cp
n2 2 f A v

.Nwwnnbxw

where f is a function of the ratio R,p cp/Rpcps only and satisfies t
relation

. Ryp.cp — Rpepa exp (In 2/f)
— " — farccosh ]——~ "7 M .
Rygcp + Rpcpa ! w 2

By )
v E\nﬁ, (16)

ere j is the current which passes between the two points. Equation (13)
ollows immediately from (16).

In order to estimate the order of magnitude of the error introduced if
he contacts are of finite size and not at the circumference ‘of the sample we
erived an approximation formula for a few special cases. In all cases we
ssumed that the sample had the form of a circular disc with contacts
aced at angles of 90°. Furthermore we assumed that the area over which

0 =

! hm o0 2 50t 5w’ he contact is made is an equipotential area. We shall denote by Ap/e
IAB.CD 23 o . . .
Rac.0a ~ o nd Apy/ug the relative errors introduced in the measurement of the

specific resistivity and the Hall mobility, respectively. .
‘In fig. 8a is presented the case in which one of the contacts is of finite
ngth d; it is assumed to lie along the circumference of the sample. The

Fig. 7. The function f used for determining the specific resistivity of the sample, plotted
a function of Rap,cp/Rec,pA -

In fig. 7 a plot is given of f as a function of Ry p/Rgcps. If Rypep an
Rpcps are almost equal, f can be approximated by the formula

D —_—
d
fal— Awﬁrnw — wwnuﬁvm me . Awwwhc — mwwo.u,pvp w (n2)?  (In2)3 .
Rypeo + Rucps) 2 \Rygep + Rpcpa) ( 4 12 )
A C A C
sample. The Hall mobility is then given by ) B

I

le

93603

4 ARgpsc

\amnw 0

Fig, 8. Some special cases for which the error in the measurement of @ and ppg due to the
finite length or the finite distance to the ciicumference of one contact has been calculated.

where B is the magnetic induction and ARpy, s the change of the resistanc
Rgp ac due to the magnetic field.

Equation (13) is based upon the following argument: If we apply a
magnetic field perpendicular to the sample the equations T

other Hooamn.ﬁmv. are infinitely small and located at the circumference.
The diameter of the sample will be denoted by D. In this case for a small
value of d/D-and of B the following u&mﬁobmmbpm% be shown to hold:
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m_,w A —& , added in proof
0 16 D?1n 2 . . . .
Apy 9d In, sec. 2 we derived a H&mﬂob. between the resistances W»w,e.u“ mwmwn.g
e - s o/d if all contacts are at the circumference of the sample and infinitely
Mu 72D all. If the contacts are all of finite size there will be in general six in-

vendent finite resistances, for example the resistances Rugag> Racac
40> Rpcpes Reppp and Rep op. We assume that the contacts are areas
f constant potential. It can be shown that, if the contacts are located at
e circumference of the sample, also in this case there must be a relation

perpendicular to the circumference. In this case the error introduced will b
as in the foregoing case, but with d twice as large: -

A — 2
= D m e’ (16 ween these six resistances and g/d which determines o/d uniquely as a
¢ , n 2 nction of these six resistances. If ‘there is only one contact of finite size,
m@m — —4d. ay, it can-be shown that
tg - 7w2D ; . ;
. . . . : 7 wd | 7
Finally we consider the case in which one contact lies at a &mamﬁom d from A M FEva -+ exp Almﬂ mwnb»v — exp T@l Amﬁrnc + mwob»v_ -

the cir¢umference (see fig. 8c). In this case we obtain

2nd
mm = — @ , — exp Alu.m' N»wb\»v =0.
0 2D%In 2 + 8
Aug 2d The author is indebted to Dr C. J. Bouwkamp of this laboratory for
B : P Ty
. aD ointing out to him that, if more than one contact is of finite size, the rela-

on between the independent resistances and the specific resistivity of the
mple involves elliptic or hyper-elliptic functions rather than elementary
nctions.

Professor Bouwkamp has also drawn the author’s attention to a recent
per by Lampard *), who deals with the calculation of internal cross capa-
tances of cylinders under certain conditions of symmetry. Lampard’s
sult can be generalized as follows. Let fig. 6 of this paper represent the
oss-section of a cylindrical capacitor, cut into four parts insulated from
one another at the points A, B, C and D. Let C aB,cp denote the internal cross
pacitance of parts AB and CD, in electrostatic c.g.s. units per unit length
cylinder. Similarly, let Cycp, denote the internal cross capacitance of
C and CD. Then we have

It can be shown that if more contacts have at the same time some of th

additive.
. The wﬁmsmboo“om the contacts can be eliminated still further by using
clover-shaped” sample, as shown in fig. 9. This sample has many advan

1) C

A B

93604

\

exp(—4 7 Cup.cp) + exp(—4 72 Cpepy) = 1,

Fig. 9. The « - » i
! Mmmmmmnmﬂw%. clover-shaped mmeﬁw where the influence of the contacts has been reduced

hich is identical with eq. (1) of this paper except for the different physical
terpretation. .
In Lampard’s case of symmetry, the two capacitances C aB,cp and
cpa are mutually equal, and hence are both equal to (In 2)/47?
dependently of the size or shape of the cross-section, which is Lampard’s
eorem.

tages compared with the &l&m@-mrmw@m sample. It gives a relatively large
Hall effect at the same amount of heat dissipation, which is of wu,pwoﬁmbao
when measuring materials of low electric mobility. It has a greater
.Eoormbmo& strength and smaller samples can be measured which is of
Importance, for example, whén measuring silicon crystals made by the
floating-zone technique.

Eindhoven, September 1957 D. G. Lampard, Proc. Instn elect. Engrs, Part C, Vol. 104, No. 6, Sept. 1957, p. 271.
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