LakeShore

Hall Effect Measurement Systems



Backed and supported by nearly two decades of expertise in materials characterization systems, Lake Shore's fully integrated Hall effect measurement systems (HMS) are used to characterize physical properties in semiconductors, as well as other electronic materials including magnetoresistors, multilayer magnetic films, dilute magnetic semiconductors, superconductors, and spintronics devices. Available in a variety of electromagnet-based configurations ranging in field up to 2 T or a powerful 9 T superconducting magnet-based configuration, Lake Shore HMS are ideally suited for the most demanding materials research applications, product development, and quality control. An assortment of options expands the functionality of Lake Shore HMS.

Modern materials ranging from compound semiconductors to nanomaterials are pushing the limits of transport measurements. Lake Shore combines precision electronics, flexible software, variable magnetic field and temperature, and a wide resistance range into the most advanced HMS. When used in combination with data taken from the variable field Hall measurement, our proprietary Quantitative Mobility Spectrum Analysis (QMSA®) software resolves individual carrier mobilities and densities in multi-carrier devices such as quantum wells and high electron mobility transistors (HEMTs).

### **Contents**

| System Overview4-5                |
|-----------------------------------|
| Fields of Study/Research Areas6   |
| Materials and Measurements        |
| System Application Software8      |
| QMSA® Analysis Software9          |
| System Selection Guide10          |
| Feature Comparison11              |
| Measurement Examples12–13         |
| 7600 Series Specifications14      |
| 7700A Series/9700A                |
| Specifications15                  |
| Options and Accessories16–17      |
| Application Notes18               |
| Shipping Dimensions/Weight18      |
| Installation Dimensions/Weight 18 |
| Site Requirements18               |
| Ordering Information19            |

# Fully integrated Lake Shore HMS are backed and supported by nearly two decades of expertise in materials characterization systems



**Easy Sample Access** — for ease of sample exchange, the sample holder module swings forward and out of the magnet

### **Multiple Magnet Configurations**

4-, 7-, and 12-inch electromagnetbased configurations provide fields to 2 T; fields to 9 T available in our superconducting magnet-based configuration

**LN<sub>2</sub> Pour-Fill Bucket Dewar** — included with electromagnet-based systems; cool samples to 77 K to reduce the electron scattering by lattice vibrations (phonons)

**Variable Temperature** — measure—samples from 15 K to 800 K with an optional closed cycle refrigerator and high temperature oven

**Superconducting Magnet** — the 9709A 9 T magnet is ideal for measuring samples with low mobilities



Sample
Holders —
accommodate
up to 6-inch
wafers or up
to four 1 cm<sup>2</sup>
samples

contact blasting — simplify the tedious process of forming low resistance ohmic contacts



Integrated Software — define samples and create measurement profiles from the Windows® menu-driven interface

**Detailed Post Processing** — our optional QMSA® software package determines the mobility spectrum for each carrier species in a multi-carrier material

**Ergonomic Workstation** — in addition to housing all of the integrated electronics, the workstation acts as a convenient tabletop

AC current Hall Effect Option — extend the low-end resistance down to 10  $\mu\Omega$  for materials requiring the measurement of very low voltages

Wide Resistance Range —  $10~\mu\Omega$  to  $200~G\Omega$ 

Precision components designed to deliver quality measurements

# Our knowledgeable technical staff is available to answer your questions

### Fields of Study/Research Areas

A Lake Shore HMS is an ideal tool for characterizing the electronic transport properties of materials in a multitude of research areas.

### **Strained Semiconductors**

Strained semiconductors with step-graded buffers have different scattering rates in each of the step buffers. The mobility and density in each layer can be determined using data from the variable field Hall measurements along with our optional QMSA software package.

# Organic LEDs (OLEDs), Molecular Electronics, Organic Semiconductors, and Transparent Oxides

The Lake Shore HMS are standard equipped with a voltage-tracking mode that allows for the synchronous measurement of the Hall voltage while the magnetic field changes. Temperature drifts are asynchronous with the field change and appear as a slow drift on the voltage offset.

### **Solid State**

Variable field and temperature magnetotransport measurements provide a tool for the researcher to understand fundamental processes in solid state physics and materials science. Precision Lake Shore HMS provide a means for understanding scattering mechanisms, impurities, strain, band gap energy, and other material parameters.

### Semiconductor

By post-processing data with our QMSA software, high electron mobility transistor (HEMT) structures and multiquantum wells can be characterized with a Lake Shore HMS. The high mobility and density 2-dimensional electron gas (2DEG) carrier in the quantum well channel layer can be clearly distinguished and separated from the doped cap layer carrier.

### **HTC Superconductivity and Quantum Hall Effect**

With variable temperature capabilities from 2 K to 400 K and variable fields to 9 T, the Lake Shore Model 9709A HMS is well suited for studying superconducting materials as well as Quantum Hall effect and other quantum conductance systems.

### **Anomalous Hall Effect (AHE)**

The AHE is a tool for measuring the magnetic properties of low moment materials, ferromagnetic/semiconductor heterostructures (spintronic devices), and dilute magnetic semiconductors. Our AC current options provides a means to conduct AHE measurements.

### **Metal-Insulator Transitions**

Lake Shore variable field HMS can easily and quickly measure the magnetoresistance used to study the weak localization and interaction effect at the metal-insulator transition.

### **Dilute Magnetic Semiconductors (DMS)**

DMS materials can be characterized to determine the spindependent scattering in metallic ferromagnetic/nonmagnetic multilayers by examining giant magnetoresistance (GMR) effect. The coercivity of the layers can be compared by examining sheet resistance when the ferromagnetic layers are antiparallel.

### **Materials**

### **III-V Semiconductors**

GaAs based devices:

HEMTs (High Electron Mobility Transistors)
pHEMTs (pseudomorphic High Electron Mobility Transistors)
HBTs (Heterojunction Bipolar Transistors)

FETs (Field Effect Transistors)

MESFETs (Metal-Semiconductor Field Effect Transistors)

InP, InAs, GaN, and AIN based devices

### **Semiconductors**

a-Si, Si, Ge, SiC, Si on insulator (SOI) devices, HgCdTd, ZnO

SiGe based devices: HBTs and FETs

### **Dilute Magnetic Semiconductors**

MnGaAs and ZnO

### **Multi Quantum Well Structures**

IR applications (LEDs, laser diodes, and detectors)

### **Other Conducting Materials**

Metal oxide

Organic and inorganic conductors

### **Magnetoresistors (MR)**

MR, Giant-MR, Tunneling-MR, and Colossal-MR devices

### **High Temperature Superconductors**

**Ferrites** 

Our unique integration enables the most demanding materials research, product development, and quality control

# Direct and Derived Measurements as a Function of Field and Temperature

**Hall Voltage** 

**IV Curve** 

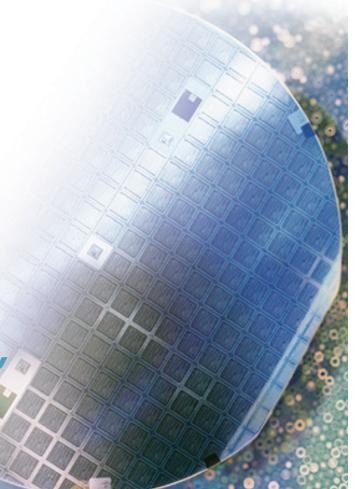
Resistance

Magnetoresistance

**Anomalous Hall Effect (AHE)** 

Hall Coefficient

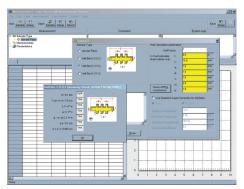
**Carrier Concentration/Density** 

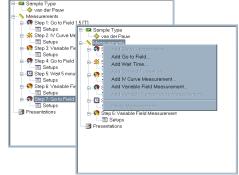

**Hall Mobility** 

**Quantum Hall Effect** 

4-Lead Resistance

Magnetotransport


Shubnikov-de Haas Oscillations (SdH)



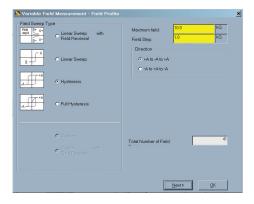

### **System Application Software**

The fully integrated HMS software is Windows® XP color graphic menu-driven using a Windows® Explorer® interface for system operation, data acquisition, and analysis. It controls magnetic field, temperature, and sample excitation during measurements allowing for the most comprehensive collection of measurement capabilities.

The software enables the user to define and save specifications and experimental configurations, as well as record and display data in laboratory and SI units for further analysis. Real-time feedback of processed data can be displayed in graphical and tabular format. The software automatically records data on single or multi-sample experiments for additional processing and analysis.

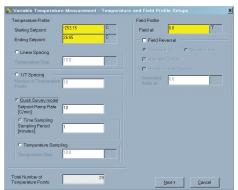





Our proprietary QMSA® package enhances the functionality of our IDEAS™ HMS application software

### **Define a Sample**

Select from several standard sample geometries and contact arrangements. Sample definition parameters include thickness, width, length, as well as contact pad width, length, and distance between contacts. An ASTM compliance check can also be performed. The 7600 series allows users to define up to four samples for consecutive measurement in one sample experiment without a hardware change.


### **Create a Measurement Profile**

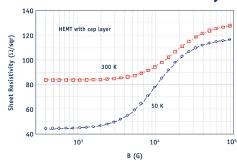
Define custom experiment profiles and measurement steps — you can include just a single step parameter (e.g., Go to Temperature, Go to Field, Wait a Specific Time), or you can set up multiple step parameters in one profile for the software to automatically execute.

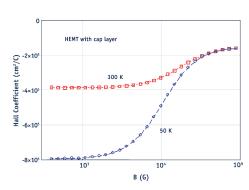


### **Field Measurement Setup**

Various field sweep (with field reversal to eliminate material resistivity errors) methods can be used to determine magnetoresistance, resistivity, Hall coefficient, mobility, four wire resistance, or hysteresis loops.



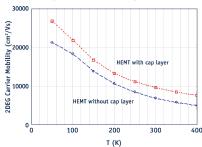

### **Temperature Measurement Setup**

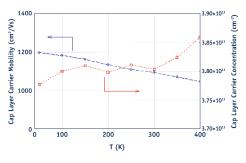

Various temperature sweeps (with temperature options) use a minimum and maximum temperature. Temperature profiles can incorporate linear spacing, definable numbers of points, or definable ramp rates.

### Post Processing and Analysis with QMSA®

Lake Shore's Quantitative Mobility Spectrum Analysis (QMSA) software package represents that most advanced multi-carrier analysis capability available. This exclusive Lake Shore software automatically segregates the mobility spectrum for each carrier species (electrons and holes) that comprise a multilayer or multi-carrier material, including heterostructures, quantum wells, and multiply doped materials. Input for the software analysis includes Hall coefficient, resistivity, and magnetic field. Output parameters include conductivity spectra as a function of mobility, number of carriers (peaks in the mobility graph), density, mobility, and sign of each carrier.

### **Hall Coefficient and Conductivity**



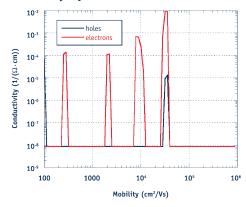




The ability to vary both magnetic field and temperature give the researcher complete flexibility to extract the maximum information from the material of interest. These figures show the field and temperature dependence of an InP pseudomorphic high electron mobility transistor (pHEMT) sample at two different temperatures. The field dependence of the Hall coefficient and resistivity implies that there is parallel conduction in the sample. The temperature dependence of the Hall coefficient and resistivity relate to changes in the scattering mechanism with temperature.

Analyzing the field dependence of this data along with similar data at different temperatures allows mobility vs. temperature and density vs. temperature plots to be obtained.

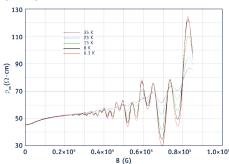
### **Mobility and Density**






Analyzing the variable field and temperature data from a pHEMT sample, 2 electron carriers were identified at each temperature from 50 K to 400 K. The pHEMT sample was measured on the Model 9709A HMS.

# **Application notes**


Download free from www.lakeshore.com or request at 614-891-2244. Full listing on page 18.

### **Mobility Spectrum**

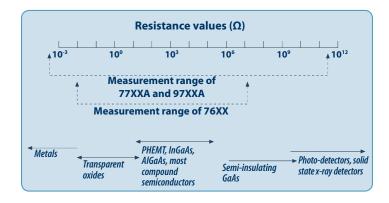


This is the resulting QMSA spectrum for a pseudomorphic high mobility transistor (pHEMT) structure. There are 4 distinct electron carriers and a single hole that populate this heterostructure device. The multi-carrier mixed conduction of this sample is clearly shown.

# The Shubnikov-de Haas (SdH) Effect



The SdH effect, mostly seen at low temperatures, is an oscillation of the magnetoresistance. Shown are SdH data for an InP pHEMT that was acquired with a Model 9709A HMS.


# Select a system to fit your applications

Parameters to consider when selecting an HMS:

# Resistance Range

Electronic transport measurements require the calculation of resistance by measuring the voltage output and dividing by the current input. The resistance range of the sample materials to be studied determines the measurement system specifications.

The Model 7700A and 9700A series HMS offer the widest possible resistance range. These systems take great care in controlling low currents and small voltages present in electron transport systems. Our AC current option extends the low-end resistance down to 10  $\mu\Omega$  when used with any system configuration. The wide resistance range offered by Lake Shore HMS enables the study of the widest possible range of materials.



# Magnet Configuration

### Variable Magnetic Field (DC)

The magnet is a key components of a Hall effect measurement system. Since it determines, in part, what kind of measurements you will be able to perform, it is important to identify current as well as anticipate future measurement needs. In addition, multi-carrier conduction of materials can only be determined with variable field Hall measurements. Lake Shore variable field Hall systems are available in electromagnet-based configurations providing fields to 2 T at room temperature, or in a 9 T superconducting magnet-based configuration.

### **Electromagnet Range**

The 7700A and 7600 series systems are available in 4-, 7-, and 12-inch electromagnet designs providing fields to 1.3 T, 2 T, and 2 T, respectively, at room temperature. With variable temperature options installed, the 4-inch system provides fields to 0.87 T and the 7-inch system to 1 T (oven and closed cycle refrigerator [CCR] are not available with the 12-inch magnet). In addition to higher field strengths, the 12-inch electromagnets provide higher field uniformity and the capability to measure samples up to 6 inches in diameter.

### **Superconducting Magnet Range**

Our Model 9709A HMS has a powerful 9T superconducting magnet. The Model 9709A is ideal for measuring samples with extremely low mobilities that require constant temperature at high fields, such as some forms of ZnO, GaN, and quantum well structures.

# Temperature Range

When configured with the optional CCR, the temperature range of our electromagnet-based HMS provides variable temperatures from 15 K to 350 K. The optional high temperature oven permits temperatures from 350 K to 800 K. Our Model 9709A superconducting magnet-based HMS comes standard with a temperature range from 2 K to 400 K.

Variable temperature measurement of resistivity and Hall coefficients are valuable for all materials. While measurements at room temperature are sufficient in many cases, transport properties can change significantly as the temperature varies. Measuring the sample material at variable temperatures allows carriers to be identified by their excitation energies and provides clues to the dominating scattering mechanism in materials. High temperature measurements also help to identify low mobility carriers in high resistance samples such as ZnO and GaN. By warming to 800 K with an optional high temperature oven, the impurities and defects of wide band gap materials can be observed. At temperatures of less than 10 K, measurement of Shubnikov-de Haas oscillations and the quantum Hall effect can yield additional information. For materials intended for applications requiring variable temperature ranges, testing the material at these temperatures can determine if it is suitable for such an application. Lake Shore HMS are designed to control temperature and magnetic flux to produce accurate, reliable Hall effect and electronic transport measurements.

|                                                                  | 76XX     | 77XXA    | 9709A    |
|------------------------------------------------------------------|----------|----------|----------|
| Current ±50 nA to ±1 A                                           | <b>✓</b> |          |          |
| Current ±1 pA to ±100 mA                                         |          | V        | <b>✓</b> |
| Voltage 0 V to 200 V                                             | <b>✓</b> |          |          |
| Voltage 0 V to 100 V                                             |          | <b>~</b> | <b>✓</b> |
| Magnetic Field to 2 T                                            | <b>✓</b> | V        |          |
| Magnetic Field to 9 T                                            |          |          | <b>✓</b> |
| Resistance Range 0.04 m $\Omega$ to 200 G $\Omega$               |          | V        | V        |
| Resistance Range 10 m $\Omega$ to 10 M $\Omega$                  | <b>✓</b> |          |          |
| 10 μ $\Omega$ lower limit with AC current option                 | <b>✓</b> | V        | V        |
| Room temp/77 K                                                   | <b>✓</b> | V        |          |
| 2 K to 400 K                                                     |          |          | <b>V</b> |
| CCR for measurements from 15 K to 350 K*                         | <b>✓</b> | ~        |          |
| High temp oven for measurements from 350 K to 800 K*             | <b>✓</b> | V        |          |
| Contact blasting <sup>†</sup>                                    | standard | optional | optional |
| Up to 4 samples                                                  | optional |          |          |
| Up to a 152 mm <sup>2</sup> (6 in <sup>2</sup> ) sample size     | <b>✓</b> | <b>~</b> |          |
| Wide mobility range: 10 to 1×10 <sup>6</sup> cm <sup>2</sup> /Vs | <b>✓</b> | V        | <b>~</b> |

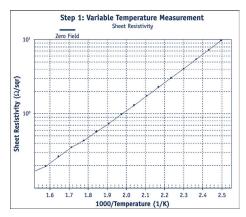
<sup>\*</sup>Not available with Model 7612 or 7712A

### **Size/Number of Samples**

Our versatile HMS can measure samples from 10 mm<sup>2</sup> (0.4 in<sup>2</sup>) up to 152 mm<sup>2</sup> (6 in<sup>2</sup>). Our standard 7600 series can measure up to 2 samples at a time, or can be configured to measure up to 4 samples at a time.

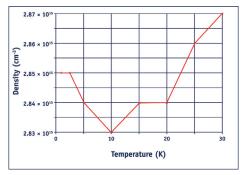
### **Mobility Range**

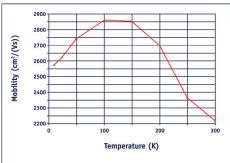
The wide standard mobility range of our HMS enables you to measure the widest possible range of materials. When combined with the HMS voltage tracking mode, low mobility materials typically used in organic semiconductors, molecular electronics, organic LEDs, and transparent oxides can be measured.


# Use us as a resource!

Our experts can advise you on the optimal system for your applications. To demonstrate the performance of our HMS and to insure the proper configuration is selected, we can measure one of your actual samples at no charge to you. Get us involved early and benefit from our many years of experience.

<sup>†</sup>This option is not CE-certified

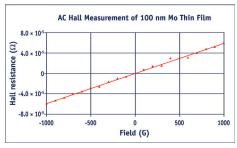

### **Classical Measurements**


### Intrinsic Conduction of Ge



This figure shows the resistivity of germanium vs. temperature. The sample temperature varied from 400 K to 650 K. As expected, a log plot of resistivity vs. magnetic field to 1 T is a straight line.

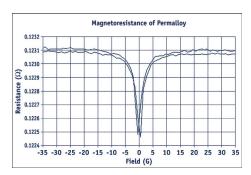
### **Temperature Coefficient of Si** (4 K - 350 K)






These figures demonstrate the mobility and density of Si as a function of temperature. The density is nearly independent of temperature and the mobility shows a typical electron-phonon scattering behavior.

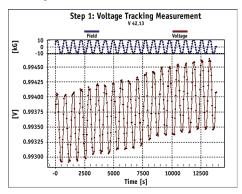
### Hall effect in metals


Measuring the Hall effect in metals requires some care. The resistivity of a metal is very low and the carrier density is very high. For these measurements, the AC current option provides superior performance.



This measurement of Hall resistance vs. field for a 100 nm thick molybdenum thin film was taken while the sample was at a temperature of 50 K. The triangles are the measured data points and the line is the best-fit straight line. A change of resistance of 10  $\mu\Omega$  can easily be resolved. The measurement time is 20 s per point.

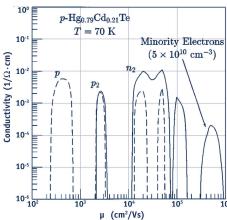
Our versatile **HMS** are capable of both classical and state of the art measurements


### Magnetoresistance of NiFe



Lake Shore HMS can be used to characterize magnet-transport in magnetic materials. If the sample mount in an electromagnet system is rotated 90° so the field lies in the plane of the sample, classical MR measurements can be made. These MR measurements on a thin film Permallov sample were taken on a Model 7704A system. Note that the small MR effect ( $\Delta$ R/R=0.5%) is easily seen. The small coercivity ( $\sim$ 1 G) of the sample is also resolved.

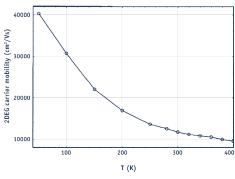
### State of the Art Measurements


### **Transparent Oxides (ZnO)**



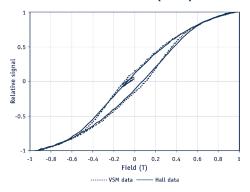
The Hall voltage of a ZnO sample was taken in voltage tracking mode. This mode is very useful for low mobility materials, as it allows Hall voltage measurements during magnetic field change. The data shows the Hall voltage and field for 10 cycles of ±10 kG field sweeps. Here, the amplitude of the Hall voltage oscillations is the true Hall signal — approximately 1.25 mV. The Hall voltage offset is almost 1 V, therefore, the true signal is 0.1% of the measured signal. The sample was measured at constant temperature in a cryostat. In this case, the drift in the offset over the 4-hour measurement was about 0.5 mV.

### **Multi-Quantum Well Structures**


IR Applications (LEDs, Laser Diodes, and Detectors)



The structure of small bandgap materials like HgCdTe (used for near IR detectors) is very complicated, requiring high fields and variable temperatures to characterize. Using QMSA, this conductivity vs. mobility for a HgCdTe sample was taken with a Model 9709A HMS, which offers variable field capabilities to 9T and a temperature range of 2 K to 400 K.


### **III-V Semiconductors**

pHEMT Mobility vs. Temp for Channel Carrier



A typical pHEMT structure has a 2DEG high mobility carrier. A low mobility carrier associated with the cap layer is also often present. The mobility of high mobility carriers increases as temperature decreases. Using a variable field and temperature HMS along with QMSA°, the mobility of the 2DEG carriers can be distinguished from the cap layer carrier. This figure shows the temperature dependence of the 2DEG carrier mobility.

### **Anomalous Hall effect (AHE)**

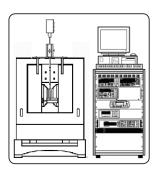


The AHE is an alternative method for measuring magnetic hysteresis M(H) loops and/or magnetotransport properties of perpendicular magnetic recording media (PMRM), ferromagnetic semiconductors, dilute magnetic semiconductors, spintronics devices, and other magnetic materials. Lake Shore HMS, when used in combination with the AC current measurement option, are capable of measuring the AHE of low moment recording media. This figure shows the hysteresis loop with minor loop for a CrCo sample. Both VSM data and AHE data are shown.

## **Application notes**

Download free from www.lakeshore.com or request at 614-891-2244. Full listing on page 18.

# **7600 Series Specifications**


|                                |                                    | 7604                                                                                                                                                                                         | 76                                                        | 607                    | 76                           | 12                |  |
|--------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------|------------------------------|-------------------|--|
| Magnetic field                 | (room temp)                        |                                                                                                                                                                                              |                                                           |                        | 2T                           | -                 |  |
| <b>y</b>                       | (variable temp)                    | ±0.87 T                                                                                                                                                                                      | +1                                                        | .2T                    |                              | A                 |  |
| Temperature                    | Standard                           | _0,0,1                                                                                                                                                                                       |                                                           | n temperature          |                              |                   |  |
| remperature                    | CCR                                | 15 K to                                                                                                                                                                                      | N                                                         | A                      |                              |                   |  |
|                                | Oven                               |                                                                                                                                                                                              | NA NA                                                     |                        |                              |                   |  |
| Carrier concent                |                                    | 350 K to 800 K NA<br>1×10 <sup>6</sup> to 1×10 <sup>19</sup> cm <sup>-3</sup>                                                                                                                |                                                           |                        |                              |                   |  |
| Mobility                       | ration density                     | 1 to 1×10 <sup>s</sup> cm²/Vs                                                                                                                                                                |                                                           |                        |                              |                   |  |
| Current (A)                    |                                    |                                                                                                                                                                                              |                                                           | A to ±1 A              |                              |                   |  |
| Voltage (V)                    |                                    |                                                                                                                                                                                              |                                                           | o 200 V                |                              |                   |  |
|                                | (standand)                         | 20/ VAD                                                                                                                                                                                      |                                                           |                        |                              |                   |  |
| Resistance rang                | , , , ,                            | 2% accuracy— VdP minimum: 40 m $\Omega$ , HB minimum: 10 m $\Omega$ , maximum: 10 M $\Omega$<br>2% accuracy— VdP minimum: 10 μ $\Omega$ , HB minimum: 10 μ $\Omega$ , maximum: 10 M $\Omega$ |                                                           |                        |                              |                   |  |
| Resistance rang                |                                    |                                                                                                                                                                                              |                                                           |                        |                              |                   |  |
| System equipm                  |                                    | /501                                                                                                                                                                                         | I room temperature                                        | /77 K; 2-sided sample  | cards                        |                   |  |
| Sample holde                   |                                    | (50) 454 000 (40) 454 000 (                                                                                                                                                                  | (4) (74 005 (4) (74                                       | 242 (4) 474 272        | 1/48) 4 1 1 1                |                   |  |
| with sample l                  | er kit (included<br>holder module) | (50) 671-209s, (10) 671-202s, (                                                                                                                                                              |                                                           |                        | ` ,                          |                   |  |
| Sample size                    |                                    | Up to $10 \times 14$ mm (0.4 $\times$ 0.6 in) on a                                                                                                                                           | Up to 76 mm (3                                            | 3 in) in diameter      | Up to 152 mm (               | 6 in) in diameter |  |
|                                |                                    | $25 \times 75$ mm (1 $\times$ 3 in) card;                                                                                                                                                    |                                                           |                        |                              |                   |  |
|                                |                                    | up to 60 mm (2.4 in) square on an                                                                                                                                                            |                                                           |                        |                              |                   |  |
|                                |                                    | $82 \times 93 \text{ mm } (3.2 \times 3.7 \text{ in) card}$                                                                                                                                  |                                                           |                        |                              |                   |  |
| Number of sa                   | mples                              |                                                                                                                                                                                              | Up to 4 (2                                                | 2 standard)            |                              |                   |  |
| Model 475 gaus                 | ssmeter                            |                                                                                                                                                                                              |                                                           | 1                      |                              |                   |  |
| Keithley equipa<br>2400 Source |                                    |                                                                                                                                                                                              |                                                           | 1                      |                              |                   |  |
| 2700 Multime                   |                                    |                                                                                                                                                                                              |                                                           | 1                      |                              |                   |  |
| 7709 6 × 8 M                   |                                    |                                                                                                                                                                                              | 1 (2 included with 4-                                     | -sample configuration  | 1)                           |                   |  |
| Magnet                         |                                    | EM4-HVA                                                                                                                                                                                      |                                                           | 7-HV                   | EM12-HF                      |                   |  |
| Pole diameter                  | r                                  | 102 mm (4 in)                                                                                                                                                                                |                                                           |                        | 305 mm (12 in)               |                   |  |
| Pole face diar                 |                                    | 102 mm (4 in)                                                                                                                                                                                | 152 mm (6 in)                                             | 76.2 mm (3 in)         | 305 mm (12 in)               | 152 mm (6 in)     |  |
|                                | c field at room                    | 1.3 T (13 kG) at 25 mm (1 in) air gap                                                                                                                                                        | 1.5 T (15 kG) at                                          | 2.0 T (20 kG) at       | 1.4 T (14 kG) at             | 2.0 T (20 kG) at  |  |
| temperature                    | c neid de room                     | 1.5 1 (15 kg/ dt 25 mm (1 m/ dn gap                                                                                                                                                          | 25 mm (1 in)                                              | 25 mm (1 in)           | 51 mm (2 in)                 | 51 mm (2 in)      |  |
|                                |                                    |                                                                                                                                                                                              | air gap                                                   | air gap                | air gap                      | air gap           |  |
| Max magneti                    | c field at                         | 0.87 T (8.7 kG) at 51 mm (2 in) air gap                                                                                                                                                      | 1.0 T (10 kG) at                                          | 1.2 T (12 kG) at       | 1.4 T (14 kG) at             | 2.0 T (20 kG) at  |  |
| variable temp                  |                                    | · ( ·, · · (- ···, · 3-p                                                                                                                                                                     | 51 mm (2 in)                                              | 51 mm (2 in)           | 51 mm (2 in)                 | 51 mm (2 in)      |  |
|                                |                                    |                                                                                                                                                                                              | air gap                                                   | air gap                | air gap                      | air gap           |  |
| Field homoge                   | neitv                              | ±0.1% over 10 mm <sup>3</sup> (0.4 in <sup>3</sup> )                                                                                                                                         |                                                           |                        | mm (2 in) diameter c         |                   |  |
|                                | r requirements                     | ` '                                                                                                                                                                                          |                                                           | system (optional chil  |                              | ircic             |  |
| Inlet tempera                  |                                    | 25 °C (77 °F) maximum                                                                                                                                                                        | r closed cycle cooling                                    |                        | F) maximum                   |                   |  |
| Pressure drop                  |                                    | 200 kPa (30 psi)                                                                                                                                                                             | 220 kB2                                                   | 1 (32 psi)             |                              |                   |  |
| Flow rate                      | l .                                | 7.6 L (2 gal)/min                                                                                                                                                                            |                                                           | gal)/min               | 140 kPa (20 psi)             |                   |  |
|                                | cooling capacity                   | 2.5 kW (8,530 BTU)/h                                                                                                                                                                         |                                                           | 060 BTU)/h             | 15 to 23 L (4 to 6 gal)/min  |                   |  |
| Bipolar magnet                 | J , ,                              | 2.3 KW (0,330 DTU)/TI 643                                                                                                                                                                    |                                                           | 65                     | 8.8 kW (30,025 BTU)/h<br>668 |                   |  |
|                                | c power supply                     | 043                                                                                                                                                                                          |                                                           |                        | 0                            | JO                |  |
| Mode                           | 44                                 | 125V 170 A (2450 W)                                                                                                                                                                          |                                                           | DC A (5 L)A()          | LCEV/ - 13                   | Γ Λ (O O L/M)     |  |
| Maximum ou                     | tput                               | ±35 V ±70 A (2450 W)<br>204/208 VAC ±10%, 13 A/phase;                                                                                                                                        | ±50 V/±1                                                  | 00 A (5 kW)            | ±65 V/±135 A (8.8 kW)        |                   |  |
| AC line input                  |                                    | 204/208 VAC ± 10%, 13 A/phase;<br>220/230 VAC ±10%, 12 A/phase;<br>380 VAC ±10%, 7 A/phase;<br>400/415 VAC ±10%, 6.5 A/phase at 50/60 Hz                                                     | 3-phase and ground 208, 220, 380,<br>400 Vrms at 50/60 Hz |                        |                              |                   |  |
| Flow rate                      |                                    | 5.7 L (1.5 gal)/min minimum                                                                                                                                                                  |                                                           | Q I /2 1               | 2.1 gal)/min                 |                   |  |
|                                | r requirements                     | Tap water or closed cooling system                                                                                                                                                           |                                                           |                        | cycle cooling system         |                   |  |
| Cooning water                  | requirements                       | (optional chiller available)                                                                                                                                                                 |                                                           |                        |                              | r                 |  |
|                                |                                    | , ,                                                                                                                                                                                          |                                                           | (optional crimer avail | able) $+11$ °C to $+25$ °    | C                 |  |
| c                              |                                    | +15 °C to +30 °C                                                                                                                                                                             | HDD CD DOM 40:                                            | - I- CVCA G ·          |                              |                   |  |
| Computer                       |                                    | Dell® computer with                                                                                                                                                                          | 1 HVV, CV-KUM, 19-ir                                      | ich SVGA flat screen n | nonitor, Windows® XP.        |                   |  |



Model 7604

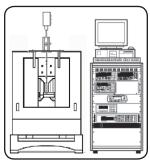


Model 7607



Model 7612

# 7700 Series/9709A Specifications


|                                | 7704A                                                                                                                                   | 770                                                                                               | D7A                       | 771                                               | 2A                                                                     | 9709A                                      |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------|
| Magnetic field (room temp)     | ±1.3 T                                                                                                                                  |                                                                                                   | ±2T                       |                                                   |                                                                        | ±9T                                        |
| (variable temp)                | ±0.87 T                                                                                                                                 | ±1.2T NA                                                                                          |                           | ±9T                                               |                                                                        |                                            |
| Temperature Standard           | 77 K or room temperature                                                                                                                |                                                                                                   | 2 K to 400 K              |                                                   |                                                                        |                                            |
| CCR                            | 15 K to                                                                                                                                 |                                                                                                   |                           |                                                   |                                                                        |                                            |
| 0ven                           | 350 K t                                                                                                                                 | o 800 K                                                                                           |                           |                                                   | NA                                                                     |                                            |
| Carrier concentration density  |                                                                                                                                         |                                                                                                   | 8×10 <sup>2</sup> to 8×10 |                                                   |                                                                        |                                            |
| Mobility                       |                                                                                                                                         |                                                                                                   | 1 to 1×10 <sup>6</sup> cr |                                                   |                                                                        |                                            |
| Current (A)                    |                                                                                                                                         |                                                                                                   | ±500 fA to ±1             |                                                   |                                                                        |                                            |
| Voltage (V)                    |                                                                                                                                         |                                                                                                   | 0 V to 100                |                                                   |                                                                        |                                            |
| Resistance range (standard)    | 5% accurac                                                                                                                              | ý— VdP minimun                                                                                    | n: 0.1 mΩ, HB mi          | inimum: 0.8 m $\Omega$ , nimum: 0.04 m $\Omega$ , | Maximum: 200 G                                                         | Ω                                          |
| Resistance range (AC current)  |                                                                                                                                         |                                                                                                   |                           | inimum: 10 $\mu\Omega$ , N                        |                                                                        |                                            |
|                                |                                                                                                                                         |                                                                                                   |                           | inimum: 10 μΩ, <i>N</i>                           | aximum: 200 G $\Omega$                                                 |                                            |
| System equipment               | 75013 r                                                                                                                                 | oom temperature/                                                                                  | 77 K; 1-sided sam         | ple cards                                         |                                                                        | 9500-SI;                                   |
| Sample holder module           | (4) 7505510 50 (                                                                                                                        | (4) 7505650 40 (4)                                                                                | \                         | 260 (4) 674 250                                   |                                                                        | 1-sided sample cards                       |
| Sample holder kit (included    | (1) /50SC10-50, (                                                                                                                       | (1) 750SC50-10, (1)                                                                               |                           |                                                   |                                                                        | Integrated into 9500-S                     |
| with sample holder module)     | IIn 4n 10 x 14 mm (0.4 x 0.6 1.)                                                                                                        | and (10) 1-inch sh                                                                                |                           |                                                   | // :m\ dia +                                                           | 12 14                                      |
| Sample size                    | Up to $10 \times 14 \text{ mm} (0.4 \times 0.6 \text{ in})$                                                                             | Up to 76 mm (                                                                                     | (3 in) diameter           | Up to 152 mm                                      | (6 in) diameter                                                        | 12 × 14 mm                                 |
|                                | on a $25 \times 75$ mm ( $1 \times 3$ in) card;<br>up to 60 mm ( $2.4$ in) square on an                                                 |                                                                                                   |                           |                                                   |                                                                        | (0.5 × 0.6 in) in a<br>25.4 mm (1 in) bore |
|                                | up to 60 mm (2.4 in) square on an $82 \times 93$ mm (3.2 $\times$ 3.7 in) card                                                          |                                                                                                   |                           |                                                   |                                                                        | 25.4 IIIIII (1 III) DORE                   |
| Number of samples              | 62 × 93 IIIII (3.2 × 3.7 III) Calu                                                                                                      |                                                                                                   | 1                         |                                                   |                                                                        |                                            |
| Model 475 gaussmeter           |                                                                                                                                         |                                                                                                   | <u>'</u><br>1             |                                                   |                                                                        | NA                                         |
| Model 776 matrix               |                                                                                                                                         |                                                                                                   | 1                         |                                                   |                                                                        | 11/1                                       |
| Keithley equipment             |                                                                                                                                         |                                                                                                   |                           |                                                   |                                                                        |                                            |
| 6220 Current Source            |                                                                                                                                         |                                                                                                   | 1                         |                                                   |                                                                        |                                            |
| 6485 Autoranging Digital       |                                                                                                                                         |                                                                                                   | 1                         |                                                   |                                                                        |                                            |
| Picoammeter                    |                                                                                                                                         |                                                                                                   |                           |                                                   |                                                                        |                                            |
| 2182A Digital Voltmeter        |                                                                                                                                         |                                                                                                   | 1                         |                                                   |                                                                        |                                            |
| Magnet                         | EM4-HVA                                                                                                                                 | EM7                                                                                               | 7-HV                      | EM1                                               | 2-HF                                                                   | Superconducting                            |
| Pole diameter                  | 102 mm (4 in)                                                                                                                           | 178 mr                                                                                            | m (7 in)                  | 305 mn                                            | n (12 in)                                                              | NA                                         |
| Pole face diameter             | 102 mm (4 in)                                                                                                                           | 152 mm (6 in)                                                                                     | 76 mm (3 in)              | 305 mm (12 in)                                    | 152 mm (6 in)                                                          | NA                                         |
| Max magnetic field at room     | 1.3 T (13 kG)                                                                                                                           | 1.5 T (15 kG)                                                                                     | 2.0 T (20 kG)             | 1.4T (                                            | 14 kG)                                                                 | 9T                                         |
| temperature                    | at 25 mm (1 in) air gap                                                                                                                 | at 25 mm                                                                                          | at 25 mm                  | at 51                                             |                                                                        |                                            |
|                                |                                                                                                                                         | (1 in) air gap                                                                                    | (1 in) air gap            | (2 in) a                                          |                                                                        |                                            |
| Max magnetic field at          | 0.87 T (8.7 kG)                                                                                                                         | 1.0 T (10 kG)                                                                                     | 1.2 T (12 kG)             | 1.4T (14 kG)                                      | 2.0 T (20 kG)                                                          | 9T                                         |
| variable temperature           | at 51 mm (2 in) air gap                                                                                                                 | at 51 mm                                                                                          | at 51 mm                  | at 51 mm                                          | at 51 mm                                                               |                                            |
| B.111                          | 2,2.                                                                                                                                    | (2 in) air gap                                                                                    | (2 in) air gap            | (2 in) air gap                                    | (2 in) air gap                                                         |                                            |
| Field homogeneity              | ±0.1% over 10 mm <sup>3</sup> (0.4 in <sup>3</sup> )                                                                                    |                                                                                                   |                           | entered 51 mm                                     |                                                                        | ±0.1% over 60 mm                           |
| C I'm                          | T                                                                                                                                       |                                                                                                   |                           | neter circle                                      |                                                                        | (2.3 in) on axis                           |
| Cooling water requirements     |                                                                                                                                         | osed cycle cooling                                                                                |                           |                                                   |                                                                        | Liquid helium                              |
| Inlet temperature              | 25 °C (77 °F) maximum                                                                                                                   | 2201-0-                                                                                           |                           | F) maximum                                        | (20 nci)                                                               | NA<br>NA                                   |
| Pressure drop Flow rate        | 200 kPa (30 psi)                                                                                                                        | 220 kPa                                                                                           |                           | 140 kPa<br>15 to 23 L (4                          |                                                                        | NA<br>NA                                   |
| Water chiller cooling capacity | 7.6 L (2 gal)/min<br>2.5 kW (8,530 BTU)/h                                                                                               |                                                                                                   | gal)/min<br>060 BTU)/h    | 8.8 kW (30,                                       |                                                                        | NA<br>NA                                   |
| Bipolar magnet power supply    | 2.3 KW (6,330 BT0)/II<br>643                                                                                                            |                                                                                                   | 65                        | 6.6 KW (50,                                       |                                                                        | 625                                        |
| Mode                           | UTJ                                                                                                                                     | 1 00                                                                                              | DC                        |                                                   | ,,,                                                                    | 023                                        |
| Maximum output                 | ±35 V ±70 A (2450 W)                                                                                                                    | +50 V/+1                                                                                          |                           | +65 V/+13                                         | 5 A (8.8 kW)                                                           | ±5 V/±60 A (300 W)                         |
| AC line input                  | 204/208 VAC ±10%, 13 A/phase;<br>220/230 VAC ±10%, 12 A/phase;<br>380 VAC ±10%, 7 A/phase; 400/415<br>VAC ±10%, 6.5 A/phase at 50/60 Hz | ±50 V/±100 A (5 kW) ±65 V/±135 A (8.8 kW)  3-phase and ground 208, 220, 380, 400 Vrms at 50/60 Hz |                           |                                                   | Single phase 100, 120, 220<br>240 VAC +6% -10%,<br>50 or 60 Hz, 850 VA |                                            |
| Flow rate                      | 5.7 L (1.5 gal)/min minimum                                                                                                             |                                                                                                   | 8 L (2.1                  | gal)/min                                          |                                                                        | NA                                         |
| Cooling requirements           | Tap water or closed cooling<br>system (optional chiller available)<br>+15 °C to +30 °C                                                  | Tap water or closed cooling system (optional chiller available)                                   |                           |                                                   | Air cooled                                                             |                                            |
| Computer                       | Dell® com                                                                                                                               |                                                                                                   |                           | /GA flat screen mon<br>ents IEEE-488 USB          |                                                                        |                                            |



Model 7704A



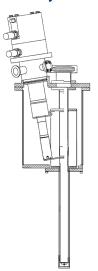
Model 7707A



Model 7712A



Model 9709A


# Options and accessories to customize your system

### **OMSA® Software**

Our exclusive Quantitative Mobility Spectrum Analysis (QMSA®) software pairs with variable field Hall measurements to characterize the mobility spectrum for individual carrier species (electrons and holes) that comprise multilayer or multi-carrier materials (e.g., heterostructures, quantum wells, multiply doped materials).

Input parameters for the software analysis include Hall coefficient, resistivity, and magnetic field. Output parameters include conductivity spectra as a function of mobility, number of carriers (peaks in the mobility graph), density, mobility, and sign of each carrier.

### Model 75014A and 76014A Closed Cycle Refrigerators (CCRs)



CCRs provide a variable temperature environment by cooling helium exchange gas. No liquid cryogens are required, therefore, ongoing operating costs are minimal. The sample probe, rotation stage, and hose accessories are provided. The sample is surrounded by helium gas at a pressure slightly above atmospheric, so samples can be changed without breaking vacuum or warming up the CCR. Pump out of the vacuum jacket to 100 Pa (0.1 torr) is required before cooldown.

The Model 750TC temperature controller is required and must be ordered separately. Continuous operation for more than one week or at temperatures

greater than room temperature requires a dedicated V81-DPC turbomolecular pump, which also must be ordered separately.

**Cryostat:** ARS Omniplex with 204SL closed cycle refrigerator and compressor, water cooled (3 L [0.8 gal] per min)

Temperature range: 15 K to 350 K

Sample geometry: One 12 mm (0.47 in) diameter maximum; van der Pauw or

Hall bar geometry

Contacts: 6 solder posts provided; 6 additional, unguarded feedthrough pins available

### Model 750TC Temperature Controller

The autotuning cryogenic temperature controller is used to measure and control either the closed cycle refrigerator or oven. The Model 750TC includes a Model 340 temperature controller, connectors, and accessories.



### Model 75016 and 76016 High Temperature Ovens

The Hall system oven sample module features a heating unit oven body, sample insert, and sample chamber flush/fill unit. The oven body is rigidly mounted to the electromagnet frame

and positioned between the electromagnet pole faces. The sample insert attaches through the top of the oven body via a turn locking mechanism. The sample insert makes no contact with the oven body. Because the oven body and sample insert form a vacuum-tight enclosure, the sample heating can be done under an inert gas atmosphere—argon is recommended. The insert has a temperature sensor mounted near the sample

location. Electrical contact to the sensor is made through a connector at the top of the sample insert.

The Model 750TC temperature controller and a mechanical fore vacuum pump (such as the Lake Shore Model PS-E2M) are required and must be ordered separately.

**Temperature range:** 350 K to 800 K **Accuracy:** 0.4 K to 3 K over temperature range

Sample geometry: 14 mm imes 17 mm imes 1 mm maximum; Hall bar or

van der Pauw geometry

# — exactly the way you need it

### **Model V81-DPC Compact Turbo Pumping System**

Versatile vacuum pumping station used to pump out the vacuum jacket and transfer line vacuum spaces. Pump station includes Varian V-81 turbo pump with oil-free dry scroll backing pump, vacuum gauge for high vacuum, controller and adaptors.

### **AC Current Hall Effect Measurement**

The AC current Hall option is used for the measurement of Hall effect and resistivity in materials with high conductivity (metals) or low mobility (transparent oxides), requiring the measurement of very low voltages. AC measurements are more sensitive than DC measurements.



The AC Hall option, designed for precise, low noise AC resistance measurements on van der Pauw samples with resistances as small as 10  $\mu\Omega$ , incorporates a Lake Shore Model 370 AC resistance bridge. The fully integrated Model 370 uses 4-lead AC measurement for the best possible accuracy with the lowest possible excitation current. AC coupling at each amplifier stage reduces offsets for higher gain and greater sensitivity than DC techniques allow. Phase sensitive detection, an AC filtering technique used in lock-in amplifiers, reclaims small measurement signals from environmental noise.

### **Contact Blasting**

Contact blasting delivers high voltage blasting to the probe and semiconductor surfaces, allowing low-resistance ohmic contacts to be made on high performance, high resistance semiconductor devices. *Note: this option is not CE-certified.* 

### **Room Temperature/77 K 4-Sample Card Module**



The 4-sample probe with two 2-sided plug-in sample cards facilitates consecutive multisample measurements without hardware exchange.

Sample size: 2-sided sample plug-in cards – permits up to four 12 mm (0.47 in) diameter maximum samples on a 25  $\times$  75 mm (1  $\times$  3 in) card

Sample geometry: Hall bar or van der Pauw

Number of contacts: 4 or 6

**Temperature:** Room temperature or 77 K (liquid nitrogen required for 77 K)



### **Sample Holders**

A variety of sample holders are available to facilitate sample mounting and storage as well as expedite sample exchange. Standard plug-in sample cards allow mounting for one or two samples up to 12 mm (0.47 in) in diameter. Optional cards permit 76, 102, and 152 mm (3, 4, and 6 in) wafer samples, while a contact pin-pressure probe card permits sample mounting without requiring contact pad soldering. Some of the available sample holders include\*:



**760SC10-50:** 2-sided Hall sample card, 12 mm (0.47 in) diameter sample, pack of 50, including one with InAs sample

**750SC10-50:** Hall sample card, 12 mm (0.47 in) diameter sample, pack of 50

**671-205:** Hall sample card with 4 pressure probes, 50 mm (2 in) diameter sample

**671-202:** Hall sample card, 60 mm (2.36 in) diameter sample

\*See ordering information for a complete list with descriptions of available sample holders



### **Application Notes**

- Extraction of Low Mobility, Low Conductivity Carriers from Field Dependent Hall Data
- Anomalous Hall Effect Magnetometry Studies of Magnetization Processes of Thin Films
- Compound Semiconductors: Electronic Transport Characterization of HEMT Structures
- Characterizing Multi-Carrier Devices with Quantitative Mobility Spectrum Analysis and Variable Field Hall Measurements
- Measurement of the Magnetic Properties of Double Layered Perpendicular Magnetic Recording Media Using an Anomalous Hall Effect Magnetometer
- Characterization of Multi-Carrier Heterostructure Devices with Quantitative Mobility Spectrum Analysis and Variable Field Hall Measurements
- Evaluation of Transport Properties Using Quantitative Mobility Spectrum Analysis

Visit us online for a bibliography of peer-review QMSA® publications

### Shipping Dimensions and Weight ( $w \times d \times h$ )

|                        | Model<br>7604                                                                      | Model<br>7607                                                                       | Model<br>7612                                                                        | Model<br>7704                                                                      | Model<br>7707                                                                       | Model<br>7712                                                                           | Model<br>9709                                                                      |
|------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Instrument<br>Console  | 1.17 m × 1.10 m<br>× 1.75 m<br>(46.1 in × 43.3<br>in × 68.9 in)<br>392 kG (864 lb) | 1.17 m × 1.10 m<br>× 1.75 m<br>(46.1 in × 43.3<br>in × 68.9 in)<br>318 kG (700 lb)  | 1.17 m × 1.10 m<br>× 1.75 m<br>(46.1 in × 43.3 in<br>× 68.9 in)<br>318 kG (700 lb)   | 1.17 m × 1.10 m<br>× 1.75 m<br>(46.1 in × 43.3<br>in × 68.9 in)<br>392 kG (864 lb) | 1.17 m × 1.10 m<br>× 1.75 m<br>(46.1 in × 43.3<br>in × 68.9 in)<br>318 kG (700 lb)  | 1.17 m × 1.10 m<br>× 1.75 m<br>(46.1 in × 43.3<br>in × 68.9 in)<br>318 kG (700 lb)      | 0.89 m × 1.10 m<br>× 1.75 m<br>(35.0 in × 43.3 in<br>× 68.9 in)<br>139 kG (305 lb) |
| Electromagnet          | 0.92 m × 0.87 m<br>× 1.10 m<br>(36.2 in × 34.3<br>in × 43.3 in)<br>275 kG (605 lb) | 1.30 m × 1.22 m<br>× 1.20 m<br>(51.2 in × 48.0<br>in × 47.2 in)<br>705 kG (1550 lb) | 0.92 m × 0.92 m<br>× 1.22 m<br>(36.2 in × 36.2 in<br>× 48.0 in)<br>2750 kG (6050 lb) | 0.92 m × 0.87 m<br>× 1.10 m<br>(36.2 in × 34.3<br>in × 43.3 in)<br>275 kG (605 lb) | 1.30 m × 1.22 m<br>× 1.20 m<br>(51.2 in × 48.0<br>in × 47.2 in)<br>705 kG (1550 lb) | 0.92 m × 0.92 m<br>× 1.22 m<br>(36.2 in × 36.2<br>in × 48.0 in)<br>2750 kG (6050<br>lb) |                                                                                    |
| Electromagnet<br>Stand |                                                                                    |                                                                                     | 0.92 m × 0.92 m<br>× 0.81 m<br>(36.2 in × 36.2 in<br>× 31.9 in)<br>182 kG (400 lb)   |                                                                                    |                                                                                     | 0.92 m × 0.92 m<br>× 0.81 m<br>(36.2 in × 36.2<br>in × 31.9 in)<br>182 kG (400 lb)      |                                                                                    |
| Power Supply           | 0.64 m × 0.74 m<br>× 0.56 m<br>(25.0 in × 29.0<br>in × 22.0 in)<br>79 kG (175 lb)  | 0.76 m × 0.84 m<br>× 1.53 m<br>(29.9 in × 33.1<br>in × 60.2 in)<br>295 kG (650 lb)  | 0.76 m × 0.92 m<br>× 1.78 m<br>(29.9 in × 36.2 in<br>× 70.1 in)<br>395 kG (880 lb)   | 0.64 m × 0.74 m<br>× 0.56 m<br>(25.0 in × 29.0<br>in × 22.0 in)<br>79 kG (175 lb)  | 0.76 m × 0.84 m<br>× 1.53 m<br>(29.9 in × 33.1<br>in × 60.2 in)<br>295 kG (650 lb)  | 0.76 m × 0.92 m<br>× 1.78 m<br>(29.9 in × 36.2<br>in × 70.1 in)<br>395 kG (880 lb)      | 0.69 m × 0.69 m<br>× 0.46 m<br>(27 in × 27 in × 18 in)<br>36 kG (80 lb)            |
| Dewar and<br>Cryostat  |                                                                                    |                                                                                     |                                                                                      |                                                                                    |                                                                                     |                                                                                         | 0.97 m × 0.90 m ×<br>1.27 m<br>(38.2 in × 35.4 in<br>× 50.0 in)<br>80 kG (175 lb)  |

### Installation Dimensions and Weight ( $w \times d \times h$ )

|                             | Model<br>7604                                                                                                                                                                   | Model<br>7607                                                                       | Model<br>7612                                                                       | Model<br>7704                                                                      | Model<br>7707                                                                       | Model<br>7712                                                                          | Model<br>9709                                                                     |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Instrument<br>Console       | $0.79 \mathrm{m} \times 0.77 \mathrm{m} \\ \times 1.60 \mathrm{m} \\ (31.1 \mathrm{in} \times 30 \mathrm{in} \\ \times 63.0 \mathrm{in}) \\ 131 \mathrm{kG}  (288 \mathrm{lb})$ | 0.79 m × 0.77 m<br>× 1.60 m<br>(31.1 in × 30 in<br>× 63.0 in)<br>70 kG (155 lb)     | 0.79 m × 0.77 m<br>× 1.60 m<br>(31.1 in × 30 in ×<br>63.0 in)<br>70 kG (155 lb)     | 0.79 m × 0.77 m<br>× 1.60 m<br>(31.1 in × 30 in<br>× 63.0 in)<br>131 kG (288 lb)   | 0.79 m × 0.77 m<br>× 1.60 m<br>(31.1 in × 30 in<br>× 63.0 in)<br>70 kG (155 lb)     | 0.79 m × 0.77 m<br>× 1.60 m<br>(31.1 in × 30 in<br>× 63.0 in)<br>70 kG (155 lb)        | 0.79 m × 0.77 m ×<br>1.60 m<br>(31.1 in × 30 in<br>× 63.0 in)<br>125 kG (275 lb)  |
| Electromagnet<br>and Insert | 0.84 m × 0.54 m<br>× 1.65 m<br>(33.1 in × 21.3<br>in × 65.0 in)<br>295 kG (650 lb)                                                                                              | 1.20 m × 0.71 m<br>× 1.65 m<br>(47.2 in × 28.0<br>in × 65.0 in)<br>739 kG (1625 lb) | 0.91 m × 1.0 m ×<br>1.60 m<br>(35.8 in × 39.4 in<br>× 63.0 in)<br>2682 kG (5900 lb) | 0.84 m × 0.54 m<br>× 1.65 m<br>(33.1 in × 21.3<br>in × 65.0 in)<br>295 kG (650 lb) | 1.20 m × 0.71 m<br>× 1.65 m<br>(47.2 in × 28.0<br>in × 65.0 in)<br>739 kG (1625 lb) | 0.91 m × 1.0 m<br>× 1.60 m<br>(35.8 in × 39.4<br>in × 63.0 in)<br>2682 kG (5900<br>lb) |                                                                                   |
| Power Supply                | Installed in<br>instrument<br>console                                                                                                                                           | 0.60 m × 0.70 m<br>× 1.35 m<br>(23.6 in × 27.6<br>in × 53.1 in)<br>250 kG (550 lb)  | 0.60 m × 0.70 m<br>× 1.35 m<br>(23.6 in × 27.6 in<br>× 53.1 in)<br>354 kG (780 lb)  | Installed in<br>instrument<br>console                                              | 0.60 m × 0.70 m<br>× 1.35 m<br>(23.6 in × 27.6<br>in × 53.1 in)<br>250 kG (550 lb)  | 0.60 m × 0.70 m<br>× 1.35 m<br>(23.6 in × 27.6<br>in × 53.1 in)<br>354 kG (780 lb)     | 0.48 m × 0.52 m ×<br>0.18 m<br>(18.9 in × 20.5 in<br>× 7.1 in)<br>27 kG (60 lb)   |
| Dewar and<br>Cryostat       |                                                                                                                                                                                 |                                                                                     |                                                                                     |                                                                                    |                                                                                     |                                                                                        | 0.89 m × 0.81 m ×<br>1.19 m<br>(35.0 in × 31.9 in<br>× 46.9 in)<br>69 kG (150 lb) |

### **Site Requirements**

### **Power**

Instrumentation, computer, and optional vacuum pump require two standard single-phase electrical outlets (20 A maximum). Magnet power supply and optional recirculation chiller requires 3-phase electrical outlets (21 A maximum).

### Water

Electromagnet requires one supply and one return line for cooling with up to 23 L/min and 45 to 75 psi. Magnet power supply requires up to 8 L/min with 45 to 75 psi and +15 °C to +24 °C water temperature.

### Floor

The floor must support the weight of the magnet and the supply (see Installation Dimensions and Weight table).

### **Environment**

The Hall system requires an environment between 18 °C and 28 °C that is relatively free of airborne dust and debris. Also, there should be no equipment placed next to the Hall system that would emit or be susceptible to high levels of magnetic interference (distribution boxes, vibration equipment, x-ray machines, etc.)

### LHe (Model 9709A)

The 9709A requires < 6 to 7 L per day of LHe (static operation at 4.2 K).

### **Ordering Information**

### **Hall Effect Systems**

7604Hall system, 102 mm (4 in) electromagnet, 643 magnet power supply, 2 sample, 10 M $\Omega$  limit7604-4Hall system, 102 mm (4 in) electromagnet, 643 magnet power supply, 4 sample, 10 M $\Omega$  limit7607Hall system, 178 mm (7 in) electromagnet, 665 magnet power supply, 2 sample, 10 M $\Omega$  limit7607-4Hall system, 178 mm (7 in) electromagnet, 665 magnet power supply, 4 sample, 10 M $\Omega$  limit

7612 Hall system, 305 mm (12 in) electromagnet, 668 magnet power supply, 2 sample or wafer capability, 10 MΩ limit\*
7612-4 Hall system, 305 mm (12 in) electromagnet, 668 magnet power supply, 4 sample or wafer capability, 10 MΩ limit\*

7704A Hall system, 102 mm (4 in) electromagnet, 643 magnet power supply, 100 V, 200  $G\Omega$ , autoswitching 7707A Hall system, 178 mm (7 in) electromagnet, 665 magnet power supply, 100 V, 200  $G\Omega$ , autoswitching 7712A Hall system, 305 mm (12 in) electromagnet, 668 magnet power supply, 100 V, 200  $G\Omega$ , autoswitching\*

**9709A** Hall system, 9 T magnet, 100 V,  $200 \text{ G}\Omega$ , autoswitching \*Temperature options not available with these systems

| 7600 | <b>Series</b> | Options |
|------|---------------|---------|
|------|---------------|---------|

| 75011      | Sample holder module, room temp/77 K nitrogen pour-fill bucket                    |
|------------|-----------------------------------------------------------------------------------|
| 76014A     | Closed cycle refrigerator (CCR) with sample module                                |
| 76014-SI   | Sample insert for 76014A CCR                                                      |
| 76016      | Oven sample module for 7600, 350 K to 800 K                                       |
| 750QMSA    | QMSA® software option (for 7600, 7700A, and 9700A systems)                        |
| 76020      | AC current measurement option, 2-sample configuration                             |
| 76020-4    | AC current measurement option, 4-sample configuration                             |
| 750TC      | Temperature controller option with cabling and rack mount                         |
| 3464       | Thermocouple input card                                                           |
| 750SC-3    | Hall sample card and enclosure with 4-point contacts for 76 mm (3 in) wafer       |
| 750SC-4    | Hall sample card and enclosure with 4-point contacts for 102 mm (4 in) wafer      |
| 750SC-6    | Hall sample card and enclosure with 4-point contacts for 152 mm (6 in) wafer      |
| 750SC-3-RK | Hal sample card replacement kit (board, ring, and screws) for 76 mm (3 in) wafer  |
| 750SC-4-RK | Hal sample card replacement kit (board, ring, and screws) for 102 mm (4 in) wafer |
| 750SC-6-RK | Hal sample card replacement kit (board, ring, and screws) for 152 mm (6 in) wafer |
| 750EN-3    | Hall sample enclosure for 76 mm (3 in) wafer                                      |
| 750EN-4    | Hall sample enclosure for 102 mm (4 in) wafer                                     |
| 750EN-6    | Hall sample enclosure for 152 mm (6 in) wafer                                     |
| 671-209    | Hall sample card, 2 sided, $10 \times 14$ mm (0.4 $\times$ 0.6 in) square         |
|            | or 12 mm (0.5 in) diameter sample                                                 |
| 7606640 50 | Hell commission 2 sided 10 x 14 mms (0.4 x 0.6 in) converse at 12 mms (0.5 in)    |

**760SC10-50** Hall sample card, 2 sided,  $10 \times 14$  mm (0.4  $\times$  0.6 in) square or 12 mm (0.5 in)

diameter sample, box of 50 including one with an InAs sample

**671-202** Hall sample card, 60 mm (2.36 in) square or 60 mm (2.36 in) diameter sample

671-205 Hall sample card, 50 mm (2 in), with four pressure probes

**671-260** Wire for sample contacts

### 9700A Series Options

**9500-SI** Sample insert for 9700A system

9700-SI-IPSample insert, in plane, vertical sample mount for 9700A system750QMSAQMSA® software option (for 7600, 7700A, and 9700A systems)

77020 AC current measurement option

### Accessories

**700TLF** LHe flexible transfer line **PA-40-25** NW40 to NW25 reducer

**PA-SHOSE** Stainless flex hose 25 mm (1 in) with NW25 fittings

PA-ST255 Foreline sorption trap
PS-R2010 Rotary oil-sealed vacuum pump

V81-DPC-100120 Compact turbo pumping system with gauge, 100 to 120 V/60 Hz
 V81-DPC-220240 Compact turbo pumping system with gauge, 220 to 240 V/50 Hz
 V81-DPC-220240-CE Compact turbo pumping system with gauge, 220 to 240 V/50 Hz, CE

RC-EM4 Recirculating chiller for 7604 and 7704A
RC-EM7 Recirculating chiller for 7607 and 7707A
RC-EM10 Recirculating chiller for 7612 and 7712A

### **7700A Series Options**

| 75013      | Sample holder module, room temp/77 K nitrogen pour-fill bucket                              |
|------------|---------------------------------------------------------------------------------------------|
| 75014A     | Closed cycle refrigerator with sample module                                                |
| 75016      | Oven sample module, 350 K to 800 K                                                          |
| 750QMSA    | QMSA® software option (for 7600, 7700, and 9700 systems)                                    |
| 77020      | AC current measurement option                                                               |
| 77021      | Contact blasting option (Note: this option is not CE-certified)                             |
| 750TC      | Temperature controller option with cabling and rack mount                                   |
| 3464       | Thermocouple input card                                                                     |
| 750SC-3    | Hall sample card and enclosure with 4-point contacts for 76 mm (3 in) wafer                 |
| 750SC-4    | Hall sample card and enclosure with 4-point contacts for 102 mm (4 in) wafer                |
| 750SC-6    | Hall sample card and enclosure with 4-point contacts for 152 mm (6 in) wafer                |
| 750SC-3-RK | Hal sample card replacement kit (board, ring, and screws) for 76 mm (3 in) wafer            |
| 750SC-4-RK | Hal sample card replacement kit (board, ring, and screws) for 102 mm (4 in) wafe            |
| 750SC-6-RK | Hal sample card replacement kit (board, ring, and screws) for 152 mm (6 in) wafe            |
| 750EN-3    | Hall sample enclosure for 76 mm (3 in) wafer                                                |
| 750EN-4    | Hall sample enclosure for 102 mm (4 in) wafer                                               |
| 750EN-6    | Hall sample enclosure for 152 mm (6 in) wafer                                               |
| 750SC10-10 | Hall sample card, $10 \times 14$ mm (0.4 $\times$ 0.6 in) square or                         |
|            | 12 mm (0.5 in) diameter sample, pack of 10                                                  |
| 750SC10-50 | Hall sample card, $10 \times 14$ mm (0.4 $\times$ 0.6 in) square or                         |
|            | 12 mm (0.5 in) diameter sample, pack of 50                                                  |
| 750SC50-10 | Hall sample card, 60 mm (2.36 in) square or 60 mm (2.36 in) diameter sample, box of 10 $$   |
| 671-201    | Hall sample card, $10 \times 14$ mm (0.4 $\times$ 0.6 in) square or 12 mm (0.5 in) diameter |
| 671-202    | Hall sample card, 60 mm (2.36 in) square or 60 mm (2.36 in) diameter sample                 |
| 671-204    | Hall sample card, 19 mm (0.75 in), in-plane operation                                       |
| 671-205    | Hall sample card, 50 mm (2 in), with four pressure probes                                   |
| 671-211    | Spare sample probe for 75014A CCR sample module                                             |
| 671-260    | Wire for sample contacts, box                                                               |
| 671-250    | Box for $25 \times 25$ mm (1 $\times$ 1 in) sample cards (for 10 mm [0.4 in] samples)       |
|            |                                                                                             |

# LakeShore.

Lake Shore Cryotronics, Inc. 575 McCorkle Boulevard Westerville, OH 43082 USA Tel 614-891-2244 Fax 614-818-1600 e-mail info@lakeshore.com www.lakeshore.com

Established in 1968, Lake Shore Cryotronics, Inc. is an international leader in developing innovative measurement and control solutions. Founded by Dr. John M. Swartz, a former professor of electrical engineering at the Ohio State University, and his brother David, Lake Shore produces equipment for the measurement of cryogenic temperatures, magnetic fields, and the characterization of the physical properties of materials in temperature and magnetic environments.



©2012 Lake Shore Cryotronics, Inc. All rights reserved

The technical and pricing information contained herein is subject to change at any time.

Keithley, Keithley Instruments, and SourceMeter are trademarks or registered trademarks of Keithley Instruments, Inc. in the United States and other countries; Dell is a trademark of Dell, Inc.; Windows and Explorer area registered trademarks of Microsoft, Inc.; National Instruments is a trademark of National Instruments Corporation; Omniplex is a registered trademark of APD Cryogenics, Inc.

All other trademarks or service marks noted herein are either property of Lake Shore Cryotronics, Inc., or their respective companies.

020612