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A-2 Hall Effect Measurements 

A.1 GENERAL 
The model Hall effect system consists of a uniform slab of electrically conducting material through which a 
uniform current density flows in the presence of a perpendicular applied magnetic field. The Lorentz force 
deflects moving charge carriers to one side of the sample and generates an electric field perpendicular to both 
the current density and the applied magnetic field. The Hall coefficient is the ratio of the perpendicular electric 
field to the product of current density and magnetic field, while the resistivity is the ratio of the parallel electric 
field to the current density 

Experimental determination of a real material's transport properties requires some significant departures from 
the ideal model. To begin with, one cannot directly measure the electric field or current density inside a 
sample. Current density is determined from the total excitation current and the sample�’s geometry. Electric 
fields are determined by measuring voltage differences between electrical contacts on the sample surface. 

Electrical contacts are made of conductive material, and usually have a higher conductivity than the sample 
material itself. Electric current therefore tends to flow through the contacts rather than the sample, distorting 
the current density and electric field in the sample from the ideal. Excitation current flowing through the 
contacts used to measure voltage differences reduces both current density in the vicinity and the Hall field. If a 
contact extends across the sample in the same direction as the Hall field, it can conduct current from one side 
of the sample to the other, shorting out the Hall voltage and leading to an underestimate of the Hall coefficient. 
Finally, if pairs of contacts used in a voltage measurement are not aligned properly either perpendicular or 
parallel to the excitation current density, then the voltages measured will not correctly determine the 
perpendicular or parallel component of the electric field. To minimize these geometrical problems, one must 
take care with the size and placement of electrical contacts to the sample. 

There are also many intrinsic physical mechanisms that alter current density and electric field behavior in a 
real material. Most of these relate to the thermoelectric behavior of the material in or out of a magnetic field. 
Some of these effects can be minimized by controlling temperature in the sample�’s vicinity to minimize thermal 
gradients across it. In addition, most errors introduced by intrinsic physical mechanisms can be canceled by 
reversing either the excitation current or the magnetic field and averaging measurements. 

A.2 HALL EFFECT MEASUREMENT THEORY 
Hall effect measurements commonly use two sample geometries: (1) long, narrow Hall bar geometries and (2) 
nearly square or circular van der Pauw geometries. Each has advantages and disadvantages. In both types of 
samples, a Hall voltage is developed perpendicular to a current and an applied magnetic flux. The following is 
an introduction to the Hall effect and its use in materials characterization. A number of other sources are 
available for further information1,2,3,4. 

Hall bar geometry: Some common Hall bar geometries are shown in Figure A-1. The Hall voltage developed 
across an 8-contact Hall bar sample with contacts numbered as in Figure A-1 is: 

V V
R BI

t
H

H
= =24  

where V24 is the voltage measured between the opposing contacts numbered 2 and 4, RH is the Hall 
coefficient of the material, B is the applied magnetic flux density, I is the current, and t is the thickness of the 
sample (in the direction parallel to B). This section assumes SI units. For a given material, increase the Hall 
voltage by increasing B and I and by decreasing sample thickness. 

The relationship between the Hall coefficient and the type and density of charge carriers can be complex, but 
useful insight can be developed by examining the limit B→∞, when: 

R
r

q p n
H =

−( )
 

where r is the Hall scattering factor, q is the fundamental electric charge, p is the density of positive and n the 
density of negative charge carriers in the material. For the case of a material with one dominant carrier, the 
Hall coefficient is inversely proportional to the carrier density. The measurement implication is that the greater 
the density of dominant charge carriers, the smaller the Hall coefficient and the smaller the Hall voltage which 
must be measured. The scattering factor r depends on the scattering mechanisms in the material and typically 
lies between 1 and 2.1,5
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Hall Effect Measurements A-3 

Another quantity frequently of interest is the carrier mobility, defined as: µH =
RH

ρ  

where µH is the Hall mobility and ρ is the electrical resistivity at zero magnetic flux density. The electrical 
resistivity can be measured by applying a current between contacts 5 and 6 of the sample shown in Figure A-1 
and measuring the voltage between contacts 1 and 3, then using the formula: 

ρ ( )B
V
I

wt
b

=
13

56

 

where w is the width and t is the thickness of the Hall bar, b is the distance between contacts 1-3, and B is the 
magnetic flux density at which the measurement is taken. The Hall bar is a good geometry for making 
resistance measurements since about half of the voltage applied across the sample appears between the 
voltage measurement contacts. For this reason, Hall bars of similar geometries are commonly used when 
measuring magnetoresistance or Hall mobility on samples with low resistances. 

Disadvantages of Hall bar geometries include the following: A minimum of six contacts to make mobility 
measurements; accuracy of resistivity measurements is sensitive to the geometry of the sample; Hall bar 
width and the distance between the side contacts can be especially difficult to measure accurately. The 
accuracy can be increased by making contact to the sides of the bar at the end of extended arms as shown in 
Figure A-2. Creating such patterns can be difficult and can result in fragile samples. 
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Figure A-1 Common Hall Bar Geometries. Sample thickness, t, of a thin film sample = diffusion depth or layer thickness. 
Contacts are black, numbered according to the standard to mount in Lake Shore sample holders. 
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Figure A-2 Common van der Pauw Sample Geometries. The cross appears as a thin film pattern and the others 

are bulk samples. Contacts are black. 
 

van der Pauw geometry: Some disadvantages of Hall bar geometries can be avoided with van der Pauw 
sample geometries (see Figure A-2). Van der Pauw 5,6 showed how to calculate the resistivity, carrier 
concentration, and mobility of an arbitrary, flat sample if the following conditions are met: 
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A-4 Hall Effect Measurements 

1. The contacts are on the circumference of the sample. 
2. The contacts are sufficiently small. 
3. The sample is of uniform thickness, and: 
4. The sample is singly connected (contains no isolated holes). 

The resistivity of a van der Pauw sample is given by the expression: 

ρ π
= +

t V
I

V
Iln( )2

43

12

14

23
 

where V23 is defined as V2 - V3 and I12 indicates the current enters the sample through contact 1 and leaves 
through contact 2. Two voltage readings are required with the van der Pauw sample, whereas the resistivity 
measurement on a Hall bar requires only one. This same requirement applies to Hall coefficient measurement 
as well, so equivalent measurements take twice as long with van der Pauw samples. 

The quantity F is a transcendental function of the ratio Rr, defined as: 
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whichever is greater, and F is found by solving the equation: 

R
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F=1 when Rr=1, which occurs with symmetrical samples like circles or squares when the contacts are equally 
spaced and symmetrical. The best measurement accuracy is also obtained when Rr =1. 

Squares and circles are the most common van der Pauw geometries, but contact size and placement can 
significantly effect measurement accuracy. A few simple cases were treated by van der Pauw. Others have 
shown that for square samples with sides of length a and square or triangular contacts of size δ in the four 
corners, if δ/a < 0.1, then the measurement error is less than 10%6. The error is reduced by placing the 
contacts on square samples at the midpoint of the sides rather than in the corners7. The Greek cross shown in 
Figure A-2 has arms which serve to isolate the contacts from the active region. When using the Greek cross 
sample geometry with a/w > 1.02, less than 1% error is introduced8. A cloverleaf shaped structure like the one 
shown in Figure A-2 is often used for a patternable thin film on a substrate. The active area in the center is 
connected by four pathways to four connection pads around its perimeter. This shape makes the 
measurement much less sensitive to contact size, allowing for larger contact areas. 

The contact size affects voltage required to pass a current between two contacts. Ideal point contacts would 
produce no error due to contact size, but require an enormous voltage to force the current through the 
infinitesimal contact area. Even with square contacts in the corners of a square sample with δ/a < 0.1, the ratio 
of the output to input voltage V43, V12 is on the order of 1/10. Van der Pauw sample geometries are thus much 
less efficient at using the available excitation voltage than Hall bars. 

Advantages of van der Pauw samples: Only four contacts required. No need to measure sample widths or 
distances between contacts. Simple geometries can be used. 

Disadvantages: Measurements take about twice as long. Errors due to contact size and placement can be 
significant when using simple geometries. 

Mobility spectra: Hall effect measurements are usually performed at just one magnetic flux density, although 
polarity is reversed and the voltage readings averaged to remove some sources or error. The resulting single 
mobility calculated from the measurements is a weighted average of the mobilities of all carriers present in the 
sample. Beck and Anderson9 developed a technique for interpreting magnetic flux-dependent Hall data which 
generates a mobility spectrum. The result is a plot of the carrier concentration of conductivity as a function of 
the mobility. The number of peaks appearing in a mobility spectrum indicates the number of distinct charge 
carriers active in the material. This powerful technique has virtually eliminated the need for destructive testing 
techniques such as differential profiling. An example mobility spectrum analysis performed on a GaAs/AlGaAs 
five-quantum-well heterostructure is shown in Figure 2-9 of their paper. 

A technique combining mobility spectrum analysis and multi-carrier fitting was developed by Brugger and 
Kosser10, yielding some improvement. The development of quantitative mobility spectrum analysis by 
Antoszewski et al.2,11,12,13 has produced even greater improvements in capability. 
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Hall Effect Measurements A-5 

A.3 SAMPLE GEOMETRIES AND MEASUREMENTS SUPPORTED BY IDEAS HALL SOFTWARE 
This section describes common sample geometries useful in Lake Shore�’s 9500 Series Hall Measurement 
System and formulas used to calculate resistivities, Hall coefficients, carrier concentrations, and mobilities. 

A.3.1 System of Units 

Hall effect and magnetoresistance measurements commonly use two systems of units: the SI system and the 
so-called "laboratory" system. The laboratory system is a hybrid, combining elements of the SI, emu, and esu 
unit systems. Table A-1 lists the most common quantities, their symbols, their units in both systems, and the 
conversion factor between them. 

Table A- 1 Unit Systems and Conversions 

Quantity Symbol SI = Factor x Laboratory 
Capacitance C farad 1 farad 

Carrier concentration c,n,p m-3 10-6 cm-3 
Charge q,e coulomb 1 coulomb 

Conductivity (volume) σ (ohm m)-1  10-2 (ohm cm)-1 
Current I ampere 1 ampere 

Current density j ampere/m2 10-4 ampere/cm2 
Electric field intensity E volt/m 10-2 volt/cm 

Hall coefficient RH m3/coulomb 106 cm3/coulomb 
Magnetic induction B tesla (= V s/m2) 104 gauss 

Mobility µH m2/V s 104 cm2/V s 
Electric potential V volt 1 volt 

Resistivity ρ ohm m 102 ohm cm 

To use this table, 1 SI unit = (factor) x 1 laboratory unit. For example, 1 tesla = 104 gauss. 

A.3.2 Nomenclature 
The equations below appear twice - once in SI units, once in laboratory units. In all cases, voltages are 
measured in volts, electric currents are measured in amperes, and resistances are measured in ohms. All 
other measured quantities appear with their respective unit in brackets. For example, the width of a sample in 
SI units appears as w m . The equations below indicate voltages and currents as follows: 

 

VOLTAGE NOMENCLATURE  

( )B
kl,

± ± indicates a voltage difference V Vk l−  measured between terminals k and l. Terminal i is connected to the 

excitation current source and terminal j is connected to the current sink. 

e superscript ±. Indicates the sign of the excitation current supplied by the current source. ±B indicates the sign of the 
applied magnetic induction B, measured in the direction shown on the drawings. 

ample: ( )V B56 12,
− +  indicates a voltage difference V V1 2− measured while a negative current was supplied by a current 

source at terminal 5 and flowed to terminal 6, in the presence of a positive applied magnetic induction. 

CURRENT NOMENCLATURE 

( )B± indicates a current flowing from terminal i to terminal j of polarity given by the superscript ± and with the indicated 

magnetic field polarity. 
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A-6 Hall Effect Measurements 

A.3.3 Van der Pauw Measurements 
The van der Pauw structure is probably the most popular Hall measurement geometry, primarily because it 
requires fewer geometrical measurements of the sample. In 1958, van der Pauw13 solved the general problem 
of the potential in a thin conducting layer of arbitrary shape. His solution allowed Hall and resistivity 
measurements to be made on any sample of uniform thickness, provided that the sample was homogeneous 
and there were no holes in it. All that is needed to calculate sheet resistivity or carrier concentration is four 
point contacts on the edge of the surface (or four line contacts on the periphery); an additional measurement 
of sample thickness allows calculation of volume resistivity and carrier concentration. These relaxed 
requirements on sample shape simplify fabrication and measurement in comparison to Hall bar techniques. 

On the other hand, the van der Pauw structure is more susceptible to errors caused by the finite size of the 
contacts than the Hall bar. It is also impossible to accurately measure magnetoresistance with the van der 
Pauw geometry, so both Hall effect and magnetoresistance (i.e. the whole conductivity tensor) measurements 
must be done with a Hall bar geometry. 
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Figure A-3 Measuring Resistivity and Hall Coefficient Using a van der Pauw Geometry. 

In the basic van der Pauw contact arrangement, the four contacts made to the sample are numbered counter-
clockwise in ascending order when the sample is viewed from above with the magnetic field perpendicular to 
the sample and pointing toward the observer. The sample interior should contain no  contacts or holes. The 
sample must be homogeneous and of uniform thickness. 

Resistivity 

Again, let  V+
ijkl indicate a voltage measured across terminals k and l, with k positive, while a positive current 

flows into terminal i and out of terminal j. In a similar fashion, let R+
ijkl  indicate a resistance R+

ijkl = Vkl / Iij , with 
the voltage measured across terminals k and l, while a positive current flows into i and out of j. First calculate 
the two resistivities: 

[ ] [ ]ρ π
A

Af t m cm V V V V
I I I I

=
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− + −
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Geometrical factors f A and f B  are functions of resistance ratios QA  and QB , respectively, given by: 

Q
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Hall Effect Measurements A-7 

 
If either QA or QB is greater than one, then use the reciprocal instead. The relationship between f  and Q is 
expressed by the transcendental equation 

Q
Q

f
f

−
+

= −1
1 2

1
2

21

ln
cosh exp

ln
, 

 
which can be solved numerically. 

The two resistivities ρA and ρB  should agree to within ±10%. If they do not, then the sample is too 
inhomogeneous, or anisotropic, or has some other problem. If they do agree, the average resistivity is given 
by 

[ ]ρ ρ ρ
av

A B= + ⋅ ⋅
2

Ω Ωm, cm . 

 
Magnetoresistivity 

If desired, calculate the magnetoresistivity as 

( ) [ ] ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) [ ]
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A
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and 
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Calculate factors f A and fB  the same way as at zero magnetic field, and the average magnetoresistivity is: 

( ) ( ) ( ) [ ] [ ]ρ ρ ρ
av

A BB
B B

=
+

⋅ ⋅
2

Ω Ωm cm, . 

This measurement does not give the true magnetoresistance, as defined in terms of the material�’s conductivity 
tensor. Van der Pauw�’s calculation of resistivity is invalid in the presence of a magnetic field, since the 
magnetic field alters the current density vector field inside the sample. On the other hand, magnetoresistance 
measurements are routinely performed on van der Pauw samples anyway. 
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A-8 Hall Effect Measurements 

Hall Coefficient 

Calculate two values of the Hall coefficient by the following: 

[ ]
( ) ( ) ( ) ( )
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These two should agree to within ±10%. If they do not, then the sample is too inhomogeneous, or anisotropic, 
or has some other problem. If they do, then the average Hall coefficient can be calculated by 

[ ]R R R
Hav

HC HD= + ⋅ ⋅− −

2
m C cm C3 1 3 1,  

 
Hall Mobility 

The Hall mobility is given by 

[ ]µ
ρH

Hav

av

R
= ⋅ ⋅ ⋅ ⋅− − − −m V s cm V s2 1 1 2 1 1, , 

where ρav is the magnetoresistivity if it was measured, and the zero-field resistivity if it was not. 

A.3.4 Hall Bar Measurements 
Hall bars approximate the ideal geometry for measuring the Hall effect, in which a constant current density 
flows along the long axis of a rectangular solid, perpendicular to an applied external magnetic field. 

A.3.4.1 Six-contact 1-2-2-1 Hall Bar 
An ideal six-contact 1-2-2-1 Hall bar geometry is symmetrical. 
Contact separations a and b on either side of the sample are equal, 
with contacts located opposite one another. Contact pairs are placed 
symmetrically about the midpoint of the sample�’s long axis. 

This geometry allows two equivalent measurement sets to check for 
sample homogeneity in both resistivity and Hall coefficient. However, 
the close location of the Hall voltage contacts to the sample ends 
may cause the end contacts to short out the Hall voltage, leading to 
an underestimate of the actual Hall coefficient. While the 1-2-2-1 Hall 
bar geometry is included in ASTM Standard F76, the contact 
numbering given here differs from the standard. 

 
Figure A-4 Six-Contact 

1-2-2-1 Hall Bar Geometry 
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Resistivity 

To calculate resistivity at zero field, first calculate 
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These two resistivities should agree to within ±10%. If they do not, then the sample is too inhomogeneous, or 
anisotropic, or has some other problem. If they do, then the average resistivity is given by 

[ ]ρ ρ ρ
av

A B= + ⋅ ⋅
2

Ω Ωm, cm  . 

 
Magnetoresistivity 

Magnetoresistivity is typically used in mobility spectrum calculations, but not in Hall mobility calculations. To 
calculate magnetoresistivity, first calculate 
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These two resistivities should agree to within ±10%. If they do not, then the sample is too inhomogeneous, or 
anisotropic, or has some other problem. If they do, then the average magnetoresistivity is given by 

( ) ( ) ( ) [ ]ρ ρ ρ
av

A BB
B B

=
+

⋅ ⋅
2

Ω Ωm, cm . 
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A-10 Hall Effect Measurements 

Hall Coefficient 

First, calculate the individual Hall coefficients 
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If RHA  and RHB  do not agree to within ±10%, then the sample is too inhomogeneous, or anisotropic, or has 
some other problem. If they do agree, then the average Hall Coefficient is given by 

[ ]R R R
Hav

HA HB= + ⋅ ⋅− −

2
m C cm C3 1 3 1, . 

Hall Mobility 

[ ]µ
ρH

Hav

av

R
= ⋅ ⋅ ⋅ ⋅− − − −m V s cm V s2 1 1 2 1 1,  gives the Hall mobility where ρav is the zero-field resistivity. 

A.3.4.2 Six-contact 1-3-1-1 Hall Bar 
The ideal 1-3-1-1 Hall bar geometry places contacts 2 and 4 directly 
across from one another in the exact middle of the sample�’s length 
and contacts 1 and 3 symmetrically on either side of contact 2. 

This geometry allows no homogeneity checks, but measuring the 
Hall voltage in the exact center of the sample's length helps minimize 
the shorting of the Hall voltage via the end contacts. The 1-3-1-1 Hall 
bar is not included in ASTM Standard F76. 

Resistivity 

Calculate the resistivity at zero field by 
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Figure A-5 Six-Contact 
1-3-1-1 Hall Bar Geometry 
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Hall Effect Measurements A-11 

Magnetoresistivity 

If desired, calculate the magnetoresistivity by 
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Hall Coefficient 

Calculate the Hall coefficient by 
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Hall Mobility 

The Hall mobility is given by [ ]µ
ρH

HR
= ⋅ ⋅ ⋅ ⋅− − − −m V s cm V s2 1 1 2 1 1, , 

where ρ  is the magnetoresistivity if it was measured, and the zero-field resistivity if it was not. 

A.3.4.3 Eight-contact 1-3-3-1 Hall Bar 
The eight contact 1-3-3-1 Hall bar geometry is ideally the most 
symmetrical of the Hall bars. Two sets of three equally-spaced 
contacts lie directly opposite one another on either side of the 
sample with center contacts (numbers 2 and 4) located at the 
exact center of the sample�’s length. Voltage measurement 
connections are made to contacts 1 through 4, while current flows 
from contact 5 to contact 6. Only six of the eight contacts are used 
in this measuring procedure. The remaining two (unnumbered) 
contacts are included to keep the sample completely symmetrical. 

The eight-contact Hall bar attempts to combine the homogeneity 
checks possible with the 1-2-2-1 six-contact geometry and the 
benefit of measuring the Hall voltage in the center of the sample. It allows two resistivity measurements 
compare for homogeneity, but only one Hall voltage measurement. Either the 1-2-2-1 or 1-3-1-1 six-contact 
measurements can be made using an eight-contact Hall bar, simply by moving the electrical connections to 
the appropriate points. The eight-contact Hall bar geometry is included in ASTM Standard F76, but the contact 
numbering given here differs from the standard. 

 
Figure A-6 Eight-Contact 
1-3-3-1 Hall Bar Geometry 
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A-12 Hall Effect Measurements 

Resistivity 

First calculate the two resistivities 
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at zero magnetic field. 

If these two values disagree by more than ±10%, then the sample is too inhomogeneous, or anisotropic, or 
has some other problem. If they do agree, then the average resistivity is given by 

[ ] [ ]ρ ρ ρ
av

A B= + ⋅ ⋅
2

Ω Ωm cm,  . 

Magnetoresistivity 

If desired, calculate the two magnetoresistivities 
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If these two values disagree by more than ±10%, then the sample is too inhomogeneous, or anisotropic, 
or has some other problem. If they do agree, then the average magnetoresistivity is given by 

( ) ( ) ( ) [ ]ρ ρ ρ
av

A BB
B B

=
+

⋅ ⋅
2

Ω Ωm, cm . 
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Hall Effect Measurements A-13 

Hall Coefficient 

Calculate the Hall coefficient by 
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Hall Mobility 

The Hall mobility is given by 

[ ]µ
ρH

Hav

av

R
= ⋅ ⋅ ⋅ ⋅− − − −m V s cm V s2 1 1 2 1 1, , 

where ρav is the magnetoresistivity if it was measured, and the zero-field resistivity if it was not. 

A.4 COMPARISON TO ASTM STANDARD 

The contact numbering and voltage measurement indexing given above differ in several ways from that given 
in the ASTM Standard F7615. 

To begin, the ASTM contact numbering schemes for the van der Pauw and Hall Bar geometries are 
incompatible with one another. To allow either sample type to be mounted using the same set of contacts, 
Lake Shore�’s numbering scheme for Hall bar samples differs from the ASTM scheme. 

Second, the ASTM standard is inconsistent with the �“handedness�” of the van der Pauw contact numbering 
order with respect to the applied magnetic field. Lake Shore numbered the contacts counter-clockwise in 
ascending order when the sample is viewed from above with the magnetic field perpendicular to the sample 
and pointing toward the observer, as shown in Figure A-3 Measuring Resistivity and Hall Coefficient Using 
a van der Pauw Geometry. 
Finally, the ASTM assumes that the direction of the excitation current is to be changed by physically reversing 
the current connections. This technique is not well suited to high-resistance samples using a programmable 
current source like the Keithley Model 220. This current source (and others like it) has a guarded �“high�” 
current output, and an unguarded �“low�” current return. For proper current source operation, the �“high�” output 
lead should be farther from common ground than the �“low�” return lead, a condition violated half of the time 
when physically reversing the high and low current leads to the sample. When this condition is violated, 
leakage current can flow through the voltmeter, leading to possibly serious measurement errors. 

To avoid this difficulty, Lake Shore reversed the sign of the programmed current source, while leaving the 
contacts alone. This requires a more sophisticated notation for voltage measurements: 

( )V B
ij kl,

± ±  

In this notation, terminal i refers to the contact to which the current source output attaches, terminal j  is the 
current return contact, terminal k  is the positive voltmeter terminal, and terminal l is the negative voltmeter 
terminal. The superscript ± refers to the sign of the programmed current, while ± B refers to the sign of the 
applied magnetic field relative to the positive direction indicated in the figures. 
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A-14 Hall Effect Measurements 

A.5 SOURCES OF MEASUREMENT ERROR 

David C. Look gives a good treatment of systematic error sources in Hall effect measurements in the first 
chapter of his book.2  There are two kinds of error sources: intrinsic and geometrical. 

A.5.1 Intrinsic Error Sources 
The apparent Hall voltage, VHa, measured with a single reading can include several spurious voltages. These 
spurious error sources include the following: 

1. Voltmeter offset (Vo): An improperly zeroed voltmeter adds a voltage Vo to every measurement. The 
offset does not change with sample current or magnetic field direction. 

2. Current meter offset (Io): An improperly zeroed current meter adds a current Io to every measurement. 
The offset does not change with sample current or magnetic field direction. 

3. Thermoelectric voltages (VS): A temperature gradient across the sample allows two contacts to function 
as a pair of thermocouple junctions. The resulting thermoelectric voltage due to the Seebeck effect is 
designated Vs. Portions of wiring to the sensor can also produce thermoelectric voltages in response to 
temperature gradients. These thermoelectric voltages are not affected by current or magnetic field, to first 
order. 

4. Ettingshausen effect voltage (VE): Even if no external transverse temperature gradient exists, the 
sample can set up its own. The evxB force shunts slow (cool) and fast (hot) electrons to the sides in 
different numbers and causes an internally generated Seebeck effect. This phenomenon is known as the 
Ettingshausen effect. Unlike the Seebeck effect, VE is proportional to both current and magnetic field. 

5. Nernst effect voltage (VN): If a longitudinal temperature gradient exists across the sample, then electrons 
tend to diffuse from the hot end of the sample to the cold end and this diffusion current is affected by a 
magnetic field, producing a Hall voltage. The phenomenon is known as the Nernst or Nernst-
Ettingshausen effect. The resulting voltage is designated VN and is proportional to magnetic field, but not 
to external current. This is the one intrinsic error source which can not be eliminated from a Hall voltage 
measurement by field or current reversal. 

6. Righi-Leduc voltage (VR): The Nernst (diffusion) electrons also experience an Ettingshausen-type effect 
since their spread of velocities result in hot and cold sides and thus again set up a transverse Seebeck 
voltage, known as the Righi-Leduc voltage, VR. The Righi-Leduc voltage is also proportional to magnetic 
field, but not to external current. 

7. Misalignment voltage (VM): The excitation current flowing through the sample produces a voltage 
gradient parallel to the current flow. Even in zero magnetic field, a voltage appears between the two 
contacts used to measure the Hall voltage if they are not electrically opposite each other. Voltage contacts 
are difficult to align exactly. The misalignment voltage is frequently the largest spurious contribution to the 
apparent Hall voltage 

The apparent Hall voltage, VHa, measured with a single reading contains all of the above spurious voltages: 
VHa = VH + Vo + VS + VE + VN + VR + VM. 

All but the Hall and Ettingshausen voltages can be eliminated by combining measurements, as shown in Table 
B-1. Measurements taken at a single magnetic field polarity still have the misalignment voltage, frequently the 
most significant unwanted contribution to the measurement signal. Comparing values of Rh(+B) and Rh(-B) 
reveals the significance of the misalignment voltage relative to the signal voltage. 
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Hall Effect Measurements A-15 

A Hall measurement is fundamentally a voltage divided by a current, so excitation current errors are equally as 
important. Current offsets, Io, are canceled by combining the current measurements, then dividing the 
combined Hall voltage by the combined excitation current. 

 
Table A-2 Hall effect measurement voltages showing the elimination of all but the Hall and 

Ettingshausen voltages by combining readings with different current and magnetic field polarities. 

 I B VH VM VS VE VN VR VO 

V1 + + + + + + + + + 
V2 �– + �– �– + �– + + + 

(V1 �– V2)   2VH -2VM 0 2VE 0 0 0 
V3 + �– �– + + �– �– �– + 
V4 �– �– + �– + + �– �– + 

(�– V3 + V4)   2VH - 2VM 0 2VE 0 0 0 
(V1 �– V2 �– V3 + V4) 4VH 0 0 4VE 0 0 0 

 

A.5.2 Geometrical Errors in Hall Bar Samples 
Geometrical error sources in the Hall bar arrangement are caused 
by deviations of the actual measurement geometry from the ideal of 
a rectangular solid with constant current density and point-like 
voltage contacts. 

The first geometrical consideration with the Hall bar is the tendency 
of the end contacts to short out the Hall voltage. If the aspect ratio 
of sample length to width l / w = 3, then this error is less than 1%.15 
Therefore, it's important l w/ ≥ 3 . 

The finite size of the contacts affects both the current density and 
electric potential in their vicinity, and may lead to fairly large errors. 
The errors are larger for a simple rectangular Hall bar than for one 
in which the contacts are placed at the end of arms. 

For a simple rectangle, the error in the Hall mobility can be 
approximated (when µB << 1) by16 

∆µ
µ

ππH

H

l we c w= − − −−1 1 1 22( )( / )/ . 

Here, ∆µ H  is the amount µ H  must increase to obtain a true value. 

If l/w = 3, and c/w = 0.2, then ∆µ µH H/ .= 0 13, which is certainly a 
significant error. 

Reduce the contact-size error to acceptable levels by placing 
contacts at the ends of contact arms.17 The following aspect ratios 
yield small deviations from the ideal: p c c w l w≈ ≤ ≥, / ,3 4 . 

L
w VH

cI

 
Figure A-7 Hall Bar 

With Finite Voltage Contacts 

L

c
w

 p

I

 
Figure A-8 Hall Bar With Contact Arms 
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A.5.3 Geometrical Errors in van der Pauw Structures 

Van der Pauw's analysis of resistivity and Hall effect in arbitrary structures assumes point-like electrical 
connections to the sample. In practice, this ideal can be difficult or impossible to achieve, especially for small 
samples. The finite-contact size corrections depend on the particular sample geometry, and, for Hall voltages, 
the Hall angle θ (defined by tanθ ≅ µB, where µ is the mobility). Look2 presents the results of both theoretical 
and experimental determinations of the correction factors for some of the most common geometries. We 
summarize these results here, and compare the correction factors for a 1:6 aspect ratio of contact size to 
sample size. 

A.5.3.1 Square Structures 
The resistivity correction factor ∆ρ /ρ for a square van der Pauw structure is roughly 
proportional to(c / l)2  for both square and triangular contacts. At (c / l) = 1/6, ∆ρ /ρ = 
2% for identical square contacts, and ∆ρ /ρ < 1% for identical triangular contacts18. Hall 
voltage measurement error is much worse, unfortunately. The correction factor ∆RH / 
RH is proportional to (c / l), and is about 15% for triangular contacts when (c / l) = 1/6. 
The correction factor also increases by about 3% at this aspect ratio as the Hall angle 
increases from tanθ = 0.1 to tanθ = 0.5. 

 
 
 
 
 
 

A.5.3.2 Circular Structures 
Circular van der Pauw structures fare slightly better. van der Pauw14 gives a correction 
factor for circular contacts of 

∆ρ
ρ ≅ −

1
16 2

2

ln
c
l

 (per contact), 

which results in a correction of ∆ρ /ρ = -1% for (c / l) = 1/6 for four contacts. For the Hall 
coefficient, van der Pauw gives the correction 

∆R
R

c
l

H

H

≅ 2
2π

 (per contact). 

At (c / l) = 1/6, this results in a correction of 13% for four contacts. 

van Daal19 reduced these errors considerably (by a factor of 10 to 20 for resistivity, and 3 
to 5 for Hall coefficient) by cutting slots to turn the sample into a cloverleaf. 

The clover leaf structure is mechanically weaker than the square and round samples 
unless it is patterned as a thin film on a thicker substrate. Another disadvantage is that the 
"active" area of the cloverleaf is much smaller than the actual sample. 

 
 
 

 c

 LFigure A-9 Square van der Pauw Structure with 
Either Square or Triangular Contacts 

 c

  L
 

Figure A-10 
Circular 

van der Pauw 
Structure

 
Figure A-11 
Cloverleaf 

van der Pauw 
Structure 
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A.4.3.3 Greek Cross Structures 
The Greek cross is one of the best van der Pauw geometries to minimize finite contact errors. Its advantage 
over simpler van der Pauw structures is similar to placing Hall bar contacts at the ends of arms. David and 
Beuhler20 analyzed this structure numerically. They found that the deviation of the actual resistivity ρ from the 
measured value ρm obeyed 

( ) ( )E
a
cm

= − = ± − ±1 059 0 006 6 23 0 02
ρ
ρ . . exp . . . 

This is a very small error: for c / (c + 2a) = 1/6, where c + 2a corresponds to the 
total dimension of the contact arm, E ≅ 10-7. 

Hall coefficient results are substantially better. De Mey21,22 has shown that 

µ µ
µ

µ
µ

πH Hm

H

H

H

a ce− = ≅ −∆
1 045. /  (four contacts), 

where µH  and µHm are the actual and measured Hall mobilities, respectively. For c / (c 
+ 2a) = 1/6, this results in ∆µH / µH ≅ 0.04%, which is quite respectable. 
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